《统计学习方法》之朴素贝叶斯代码实现(包含拉普拉斯平滑)

本文介绍了朴素贝叶斯方法,它是一个生成模型,基于后验概率最大化的原理进行预测。在实际计算中,通过拉普拉斯平滑处理数据。文章还探讨了朴素贝叶斯与贝叶斯估计的区别,并提供了相关代码实现。
摘要由CSDN通过智能技术生成

    朴素贝叶斯需要注意的几点:

  1. 它是生成模型,虽然在实现时是通过计算 P ( X ∣ Y ) P ( Y ) P(X|Y)P(Y) P(XY)P(Y)求出各个label对应的值然后将结果最大的label作为预测label,这是因为计算过程中忽略了 P ( X ) P(X) P(X)的作用。实质上计算的依据是:
    P ( Y ∣ X ) = P ( X , Y ) P ( X ) = P ( X ∣ Y ) P ( Y ) P ( X ) P(Y|X) =\frac {P(X,Y)} {P(X)}=\frac {P(X|Y)P(Y)} {P(X)} P(YX)=P(X)P(X,Y)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值