该文章转载自: https://www.cnblogs.com/yin138/p/4902240.html
对内容作了些简单的补充和代码实现
大量滚动数据求平均
今天写一个程序,遇到一个求平均值的需求,数据不断的产生,如果记录所有数据,需要的存储空间是不可能的,比如我要计算消息的响应时延,一次程序运行将至少会有上亿次消息发送,存储每一次的响应时间,最后求平均,是不现实的。
在网上搜索找到一个公式,并通过EXCEL做了计算,验证了该公式的有效性,计算结果与实际算术平台值误差为零(经过后面的公式演算,其实,他的误差必须为零,haha),当然,我的测试样本只有26次,小样本都有如此高的精度,我想是没问题的了。
公式如下:
假设需要求平均的序列为Data[1], Data[2], Data[3]…Data[n]…
前n荐所求平均值为Avg[n]
算术平均为:
Avg[n] = (Data[1]+Data[2]+Data[3]+…+Data[n])/n
简单计算公式:
Avg[n] = ((n-1)*Avg[n-1] + Data[n])/n
具体公式的数学基础,我正在寻找中,如有知道的朋友,请告知我。
–经过晚上的冷静,思考,我发现我程序员思维已经很僵化了,一直以来,老师在教程序设计时,都会用从1+100应该用一个for循环来编写,在数学上,其实就是一个简单的等差数列求和公司可以搞定,像这里讨论的计算平均值,其它背后的数字真是简单的要命,而习惯摆度的我,从网上找到了上面的公式是如此的大呼神奇!而很少对一些常用的数字概念,哪怕一丁点,也懒得至思考了!我惊呼!
数字公式推算如下:
补充一下实现的代码 C#语言的.
var data = new double[LN];
double avg= 0;
for (int i = 0; i < LN; i++)
{
var n = i + 1; //这个n 必须得要, 应为数学上n是从1开始的.
//Avg[n] = ((n-1)*Avg[n-1] + Data[n])/n
avg = ( ( n - 1) * avg+ data[i]) / n; //滚动求平均
}