pytorch中数据在CPU与GPU之间的切换

数据在CPU与GPU之间来回切换的pytorch方法:

 

数据从CPU放到GPU,即数据从CPU到GPU的迁移,使用以下语句:

data.to("cuda")

 

数据 从GPU到CPU,使用以下语句:

data.to("cpu")

 

data通常会有两种数据类型:

1. Tensor

2. Module

 

to函数:转换数据类型/设备

1. tensor.to(*args, **kwargs)

2. module.to(*args, **kwargs)

 

举例:

1. tensor的to函数使用

a = torch.ones((2, 2))

a = a.to(torch.float64)

 

b = torch.ones((3, 3))

b = b.to("cuda")

 

2. module的to函数使用

fn = torch.nn.Linear((2,2))

fn.to(torch.float64)

 

gpu = torch.device("cuda")

fn.to(gpu)

 

张量与模型to函数的区别:

张量不执行inplace,模型执行inplace。也就是说,张量的to函数之后会重新构建一个新的张量,而module无需构建新的张量。

 

张量的cuda方法

b.cuda()

此方法也可以将张量迁移到GPU当中(与b.to("cuda")作用相同 ),但它是pytorch0.4.0之前的,现在已经弃用了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

蓝天居士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值