kafka-01-高性能消息中间件Kafka实战

一、简介 
Kafka是最初由Linkedin公司开发,是一个分布式、支持分区的(partition)、多副本的(replica),基于zookeeper协调的分布式消息系统,它的最大的特性就是可以实时的处理大量数据以满足各种需求场景:比如基于hadoop的批处理系统、低延迟的实时系统、Storm/Spark流式处理引擎,web/nginx日志、访问日志,消息服务等等,用scala语言编写,Linkedin于2010年贡献给了Apache基金会并成为顶级开源 项目。
 
二、使用场景
  • 日志收集:一个公司可以用Kafka收集各种服务的log,通过kafka以统一接口服务的方式开放给各种consumer,例如hadoop、Hbase、Solr等。
  • 消息系统:解耦和生产者和消费者、缓存消息等。
  • 用户活动跟踪:Kafka经常被用来记录web用户或者app用户的各种活动,如浏览网页、搜索、点击等活动,这些活动信息被各个服务器发布到kafka的topic中,然后订阅者通过订阅这些topic来做实时的监控分析,或者装载到hadoop、数据仓库中做离线分析和挖掘。
  • 运营指标:Kafka也经常用来记录运营监控数据。包括收集各种分布式应用的数据,生产各种操作的集中反馈,比如报警和报告。
 
三、基本概念
名称
解释
Broker
消息中间件处理节点,一个Kafka节点就是一个broker,一个或者多个Broker可以组成一个Kafka集群
Topic
Kafka根据topic对消息进行归类,发布到Kafka集群的每条消息都需要指定一个topic
Producer
消息生产者,向Broker发送消息的客户端
Consumer
消息消费者,从Broker读取消息的客户端
ConsumerGroup
每个Consumer属于一个特定的Consumer Group,一条消息可以被多个不同的Consumer Group消费,但是一个Consumer Group中只能有一个Consumer能够消费该消息
Partition
物理上的概念,一个topic可以分为多个partition,每个partition内部消息是有序的
 
3.1主题Topic和消息日志CommitLog
可以理解Topic是一个类别的名称,同类消息发送到同一个Topic下面。对于每一个Topic,下面可以有多个分区(Partition)日志文件:
 
Partition是一个有序的message序列,这些message按顺序添加到一个叫做commit log的文件中。每个partition中的消息都有一个唯一的编号,称之为offset,用来唯一标示某个分区中的message。
提示:每个partition,都对应一个commit log文件。一个partition中的message的offset都是唯一的,但是不同的partition中的message的offset可能是相同的。
 
3.2分布式distribution
log的partitions分布在kafka集群中不同的broker上,每个broker可以请求备份其他broker上partition上的数据。kafka集群支持配置一个partition备份的数量。
针对每个partition,都有一个broker起到“leader”的作用,0个或多个其他的broker作为“follwers”的作用。leader处理所有的针对这个partition的读写请求,而followers被动复制leader的结果。如果这个leader失效了,其中的一个follower将会自动的变成新的leader。
 
3.3生产者producer
生产者将消息发送到topic中去,同时负责选择将message发送到topic的哪一个partition中。通过round-robin做简单的负载均衡。也可以根据消息中的某一个关键字来进行区分。通常第二种方式使用的更多。
 
3.4消费者consumer
传统的消息传递模式有2种:队列( queue) 和(publish-subscribe)
  • queue模式:多个consumer从服务器中读取数据,消息只会到达一个consumer。
  • publish-subscribe模式:消息会被广播给所有的consumer。
Kafka基于这2种模式提供了一种consumer的抽象概念:consumer group
  • queue模式:所有的consumer都位于同一个consumer group 下。
  • publish-subscribe模式:所有的consumer都有着自己唯一的consumer group。
 
3.5消费顺序
Kafka比传统的消息系统有着更强的顺序保证
一个partition同一个时刻在一个consumer group中只有一个consumer instance在消费,从而保证顺序
consumer group中的consumer instance的数量不能比一个Topic中的partition的数量多,否则,多出来的consumer消费不到消息
Kafka只在partition的范围内保证消息消费的局部顺序性,不能在同一个topic中的多个partition中保证总的消费顺序性。
如果有在总体上保证消费顺序的需求,那么我们可以通过将topic的partition数量设置为1,将consumer group中的consumer instance数量也设置为1。
 
从较高的层面上来说的话,Kafka提供了以下的保证:
发送到一个Topic中的message会按照发送的顺序添加到commit log中。意思是,如果消息 M1,M2由同一个producer发送,M1比M2发送的早的话,那么在commit log中,M1的offset就会比commit 2的offset小。
一个consumer在commit log中可以按照发送顺序来消费message。
如果一个topic的备份因子设置为N,那么Kafka可以容忍N-1个服务器的失败,而存储在commit log中的消息不会丢失。
 
4.Kafka集群搭建和使用
环境准备:1.kafka是scala编写的,需要jdk环境
                 2.kafka依赖zookeeper进行协调,需要先安装zookeeper
具体步骤参照官网quick start 步骤很详细: http://kafka.apache.org/quickstart
 
5.Java客户端访问Kafka
5.1引入maven依赖
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka-clients</artifactId>
<version>1.1.0</version>
</dependency>

 

5.2 消息生产者producer
public class MsgProducer {
public static void main(String[] args) throws InterruptedException, ExecutionException {
Properties props = new Properties();
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.0.60:9092,192.168.0.60:9093,192.168.0.60:9094");
/*
发出消息持久化机制参数
(1)acks=0: 表示producer不需要等待任何broker确认收到消息的回复,就可以继续发送下一条消息。性能最高,但是最容易丢消息。
(2)acks=1: 至少要等待leader已经成功将数据写入本地log,但是不需要等待所有follower是否成功写入。就可以继续发送下一条消息。这种情况下,如果follower没有成功备份数据,而此时leader
又挂掉,则消息会丢失。
(3)acks=-1或all: 这意味着leader需要等待所有备份(min.insync.replicas配置的备份个数)都成功写入日志,这种策略会保证只要有一个备份存活就不会丢失数据。
这是最强的数据保证。一般除非是金融级别,或跟钱打交道的场景才会使用这种配置。
*/
props.put(ProducerConfig.ACKS_CONFIG, "1");
//发送失败会重试,默认重试间隔100ms,重试能保证消息发送的可靠性,但是也可能造成消息重复发送,比如网络抖动,所以需要在接收者那边做好消息接收的幂等性处理
props.put(ProducerConfig.RETRIES_CONFIG, 3);
//重试间隔设置
props.put(ProducerConfig.RETRY_BACKOFF_MS_CONFIG, 300);
//设置发送消息的本地缓冲区,如果设置了该缓冲区,消息会先发送到本地缓冲区,可以提高消息发送性能,默认值是33554432,即32MB
props.put(ProducerConfig.BUFFER_MEMORY_CONFIG, 33554432);
//kafka本地线程会从缓冲区取数据,批量发送到broker,
//设置批量发送消息的大小,默认值是16384,即16kb,就是说一个batch满了16kb就发送出去
props.put(ProducerConfig.BATCH_SIZE_CONFIG, 16384);
//默认值是0,意思就是消息必须立即被发送,但这样会影响性能
//一般设置100毫秒左右,就是说这个消息发送完后会进入本地的一个batch,如果100毫秒内,这个batch满了16kb就会随batch一起被发送出去
//如果100毫秒内,batch没满,那么也必须把消息发送出去,不能让消息的发送延迟时间太长
props.put(ProducerConfig.LINGER_MS_CONFIG, 100);
//把发送的key从字符串序列化为字节数组
props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
//把发送消息value从字符串序列化为字节数组
props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());

Producer<String, String> producer = new KafkaProducer<>(props);

int msgNum = 5;
CountDownLatch countDownLatch = new CountDownLatch(msgNum);
for (int i = 1; i <= msgNum; i++) {
Order order = new Order(i, 100 + i, 1, 1000.00);
//指定发送分区
ProducerRecord<String, String> producerRecord = new ProducerRecord<String, String>("order-topic"
, 0, order.getOrderId().toString(), JSON.toJSONString(order));
//未指定发送分区,具体发送的分区计算公式:hash(key)%partitionNum
/*ProducerRecord<String, String> producerRecord = new ProducerRecord<String, String>("my-replicated-topic"
, order.getOrderId().toString(), JSON.toJSONString(order));*/

//等待消息发送成功的同步阻塞方法
/*RecordMetadata metadata = producer.send(producerRecord).get();
System.out.println("同步方式发送消息结果:" + "topic-" + metadata.topic() + "|partition-"
+ metadata.partition() + "|offset-" + metadata.offset());*/

//异步方式发送消息
producer.send(producerRecord, new Callback() {
@Override
public void onCompletion(RecordMetadata metadata, Exception exception) {
if (exception != null) {
System.err.println("发送消息失败:" + exception.getStackTrace());

}
if (metadata != null) {
System.out.println("异步方式发送消息结果:" + "topic-" + metadata.topic() + "|partition-"
+ metadata.partition() + "|offset-" + metadata.offset());
}
countDownLatch.countDown();
}
});

//送积分 TODO

}

countDownLatch.await(5, TimeUnit.SECONDS);
producer.close();
}
}

 

 
5.3 消息消费者consumer
public class MsgConsumer {
public static void main(String[] args) {
Properties props = new Properties();
props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.0.60:9092,192.168.0.60:9093,192.168.0.60:9094");
// 消费分组名
props.put(ConsumerConfig.GROUP_ID_CONFIG, "testGroup");
// 是否自动提交offset
/*props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "true");
// 自动提交offset的间隔时间
props.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG , "1000");*/
props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "false");
/*
心跳时间,服务端broker通过心跳确认consumer是否故障,如果发现故障,就会通过心跳下发
rebalance的指令给其他的consumer通知他们进行rebalance操作,这个时间可以稍微短一点
*/
props.put(ConsumerConfig.HEARTBEAT_INTERVAL_MS_CONFIG, 1000);
//服务端broker多久感知不到一个consumer心跳就认为他故障了,默认是10秒
props.put(ConsumerConfig.SESSION_TIMEOUT_MS_CONFIG, 10 * 1000);
/*
如果两次poll操作间隔超过了这个时间,broker就会认为这个consumer处理能力太弱,
会将其踢出消费组,将分区分配给别的consumer消费
*/
props.put(ConsumerConfig.MAX_POLL_INTERVAL_MS_CONFIG, 30 * 1000);
props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);
// 消费主题
String topicName = "order-topic";
//consumer.subscribe(Arrays.asList(topicName));
// 消费指定分区
//consumer.assign(Arrays.asList(new TopicPartition(topicName, 0)));

//消息回溯消费
consumer.assign(Arrays.asList(new TopicPartition(topicName, 0)));
consumer.seekToBeginning(Arrays.asList(new TopicPartition(topicName, 0)));
//指定offset消费
//consumer.seek(new TopicPartition(topicName, 0), 10);

while (true) {
/*
* poll() API 是拉取消息的长轮询,主要是判断consumer是否还活着,只要我们持续调用poll(),
* 消费者就会存活在自己所在的group中,并且持续的消费指定partition的消息。
* 底层是这么做的:消费者向server持续发送心跳,如果一个时间段(session.
* timeout.ms)consumer挂掉或是不能发送心跳,这个消费者会被认为是挂掉了,
* 这个Partition也会被重新分配给其他consumer
*/
ConsumerRecords<String, String> records = consumer.poll(Integer.MAX_VALUE);
for (ConsumerRecord<String, String> record : records) {
System.out.printf("收到消息:offset = %d, key = %s, value = %s%n", record.offset(), record.key(),
record.value());
}

if (records.count() > 0) {
// 提交offset
consumer.commitSync();
}
}
}
}

 

6.SpringBoot整合Kafka
6.1引入maven依赖
<dependency>
<groupId>org.springframework.kafka</groupId>
<artifactId>spring-kafka</artifactId>
</dependency>

 

6.2配置文件application.yml
server:
port: 8080

spring:
kafka:
bootstrap-servers: 192.168.0.60:9092,192.168.0.60:9093
producer: # 生产者
retries: 3 # 设置大于0的值,则客户端会将发送失败的记录重新发送
batch-size: 16384
buffer-memory: 33554432
# 指定消息key和消息体的编解码方式
key-serializer: org.apache.kafka.common.serialization.StringSerializer
value-serializer: org.apache.kafka.common.serialization.StringSerializer
consumer:
group-id: mygroup
enable-auto-commit: true

 

 
6.3消息生产者 producer
@RestController
public class KafkaController {

@Autowired
private KafkaTemplate<String, String> kafkaTemplate;

@RequestMapping("/send")
public void send() {
kafkaTemplate.send("mytopic", 0, "key", "this is a msg");
}

}

 

 
6.3消息消费者 consumer
@Component
public class MyConsumer {

/**
* @KafkaListener(groupId = "testGroup", topicPartitions = {
* @TopicPartition(topic = "topic1", partitions = {"0", "1"}),
* @TopicPartition(topic = "topic2", partitions = "0",
* partitionOffsets = @PartitionOffset(partition = "1", initialOffset = "100"))
* },concurrency = "6")
* //concurrency就是同组下的消费者个数,就是并发消费数,必须小于等于分区总数
* @param record
*/
@KafkaListener(topics = "mytopic",groupId = "testGroup")
public void listen(ConsumerRecord<String, String> record) {
String value = record.value();
System.out.println(value);
System.out.println(record);
}
}

 

 
 

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值