题目
1606.找到处理最多请求的服务器
题目大意
你有 k
个服务器,编号为 0
到 k-1
,它们可以同时处理多个请求组。每个服务器有无穷的计算能力但是 不能同时处理超过一个请求 。请求分配到服务器的规则如下:
- 第
i
(序号从 0 开始)个请求到达。 - 如果所有服务器都已被占据,那么该请求被舍弃(完全不处理)。
- 如果第
(i % k)
个服务器空闲,那么对应服务器会处理该请求。 - 否则,将请求安排给下一个空闲的服务器(服务器构成一个环,必要的话可能从第 0 个服务器开始继续找下一个空闲的服务器)。比方说,如果第
i
个服务器在忙,那么会查看第(i+1)
个服务器,第(i+2)
个服务器等等。
给你一个 严格递增 的正整数数组 arrival
,表示第 i
个任务的到达时间,和另一个数组 load
,其中 load[i]
表示第 i
个请求的工作量(也就是服务器完成它所需要的时间)。你的任务是找到 最繁忙的服务器 。最繁忙定义为一个服务器处理的请求数是所有服务器里最多的。
请你返回包含所有 最繁忙服务器 序号的列表,你可以以任意顺序返回这个列表。
样例
示例 1:
输入:k = 3, arrival = [1,2,3,4,5], load = [5,2,3,3,3]
输出:[1]
解释:
所有服务器一开始都是空闲的。
前 3 个请求分别由前 3 台服务器依次处理。
请求 3 进来的时候,服务器 0 被占据,所以它呗安排到下一台空闲的服务器,也就是服务器 1 。
请求 4 进来的时候,由于所有服务器都被占据,该请求被舍弃。
服务器 0 和 2 分别都处理了一个请求,服务器 1 处理了两个请求。所以服务器 1 是最忙的服务器。
示例 2:
输入:k = 3, arrival = [1,2,3,4], load = [1,2,1,2]
输出:[0]
解释:
前 3 个请求分别被前 3 个服务器处理。
请求 3 进来,由于服务器 0 空闲,它被服务器 0 处理。
服务器 0 处理了两个请求,服务器 1 和 2 分别处理了一个请求。所以服务器 0 是最忙的服务器。
示例 3:
输入:k = 3, arrival = [1,2,3], load = [10,12,11]
输出:[0,1,2]
解释:每个服务器分别处理了一个请求,所以它们都是最忙的服务器。
示例 4:
输入:k = 3, arrival = [1,2,3,4,8,9,10], load = [5,2,10,3,1,2,2]
输出:[1]
示例 5:
输入:k = 1, arrival = [1], load = [1]
输出:[0]
数据规模
提示:
- 1 < = k < = 1 0 5 1 <= k <= 10^5 1<=k<=105
- 1 < = a r r i v a l . l e n g t h , l o a d . l e n g t h < = 1 0 5 1 <= arrival.length, load.length <= 10^5 1<=arrival.length,load.length<=105
- a r r i v a l . l e n g t h = = l o a d . l e n g t h arrival.length == load.length arrival.length==load.length
- 1 < = a r r i v a l [ i ] , l o a d [ i ] < = 1 0 9 1 <= arrival[i], load[i] <= 10^9 1<=arrival[i],load[i]<=109
arrival
保证 严格递增 。
思路
定义一个set<int>f
用来保存当前空闲的服务器;定义优先队列q
其中每一个元素是一个pair<int,int>
记录请求的结束时间和该请求占用的服务器。
初始时刻,使用的服务器都是空闲的,可以添加到f
中。对于每一个请求的到来,首先需要把q
中的占用服务器清理一部分(如果请求已经完成,就需要将服务器从q
中去除,并且将它添加到f
中),如果当前没有空闲的服务器就continue
,即当前请求被舍弃,考虑下一个请求,找到空闲服务器中第一个
≥
k
\geq k
≥k的服务器,如果没有,那么就从第
0
0
0个服务器开始找到满足空闲的服务器,即从f.begin()
开始查找,找到之后需要对服务器的请求执行数量
+
1
+1
+1操作,然后将占用服务器的编号以及结束时间入队,并且f
需要去掉占用的服务器。
最后找到请求执行数量最大的值maxx
,然后遍历所有的服务器,如果服务器的请求执行数量等于maxx
,则加入到答案数组ans
中,最后返回ans
。
- 时间复杂度: O ( ( k + n ) log k ) O((k + n) \log k) O((k+n)logk)
- 空间复杂度: O ( k ) O(k) O(k)
代码
// short int long float double bool char string void
// array vector stack queue auto const operator
// class public private static friend extern
// sizeof new delete return cout cin memset malloc
// relloc size length memset malloc relloc size length
// for while if else switch case continue break system
// endl reverse sort swap substr begin end iterator
// namespace include define NULL nullptr exit equals
// index col row arr err left right ans res vec que sta
// state flag ch str max min default charray std
// maxn minn INT_MAX INT_MIN push_back insert
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int, int>PII;
typedef pair<int, string>PIS;
const int maxn=5e4+50;//注意修改大小
long long read(){long long x=0,f=1;char c=getchar();while(!isdigit(c)){if(c=='-') f=-1;c=getchar();}while(isdigit(c)){x=x*10+c-'0';c=getchar();}return x*f;}
ll qpow(ll x,ll q,ll Mod){ll ans=1;while(q){if(q&1)ans=ans*x%Mod;q>>=1;x=(x*x)%Mod;}return ans%Mod;}
class Solution {
public:
vector<int> busiestServers(int k, vector<int>& arrival, vector<int>& load) {
set<int>f;
vector<int>t(k);
priority_queue<PII,vector<PII>,greater<PII>>q;
for(int i=0;i<k;i++)f.insert(i);
for(int i=0;i<arrival.size();i++){
while(q.size()&&q.top().first<=arrival[i]){
f.insert(q.top().second);
q.pop();
}
if(f.empty())continue;
auto it=f.lower_bound(i%k);
if(it==f.end()){
it=f.begin();
}
t[*it]++;
q.push(make_pair(arrival[i]+load[i],*it));
f.erase(it);
}
int maxx=*max_element(t.begin(),t.end());
vector<int>ans;
for(int i=0;i<k;i++){
if(t[i]==maxx){
ans.push_back(i);
}
}
return ans;
}
};