6、大数据特征约简与光纤传感器涂层研究

大数据特征约简与光纤传感器涂层研究

1. 大数据特征约简——DAHFR 过程

在处理大数据集时,尤其是在特征选择和预处理(FSbP)阶段,数据缺失是一个备受关注的问题,同时业务和数据库知识往往有限。DAHFR(数据自适应特征约简)过程在这种情况下具有重要价值。

DAHFR 过程能够对大数据集进行特征观察和约简,并且在多源数据协调尝试中具有可扩展性。初始特征约简过程完成后,DAH 得分能为用户提供关于那些在数据分析阶段需要更多关注的特征信息,帮助确定数据缺失的类型和来源,以及在数据挖掘阶段处理缺失数据的最佳方法。

在知识发现与数据挖掘(KDD)项目中,当需要对具有相似数据库设计的多源数据进行协调时,DAHFR 过程表现出色,因为它不需要用户预先深入了解每个数据源的规则和语义。

不过,DAHFR 仍有一个领域有待探索,即特征选择的阈值选择。目前使用的是 60%列健康度及以上的阈值,相关实验正在积极进行,以确定不同阈值对数据挖掘模型预测准确性的影响。

以下是 DAHFR 过程的优势总结:
|优势|描述|
| ---- | ---- |
|处理数据缺失|在数据缺失问题严重的情况下有效进行特征约简|
|多源数据协调|可扩展用于多源数据的协调|
|提供特征信息|通过 DAH 得分帮助确定数据缺失情况和处理方法|
|减少业务知识依赖|在 KDD 项目中减少对业务知识的需求|

2. 光纤传感器研究背景
2.1 光纤传感器的特点

20 世纪 70 年代低损耗光纤的引入引发了全球学术界的关注。光纤传感器(FOS)是一种非侵入式传感器,

需求响应动态冰蓄冷系统需求响应策略的优化研究(Matlab代码实现)内容概要:本文围绕需求响应动态冰蓄冷系统及其优化策略展开研究,结合Matlab代码实现,探讨了在电力需求侧管理背景下,冰蓄冷系统如何通过优化运行策略参需求响应,以实现削峰填谷、降低用电成本和提升能源利用效率的目标。研究内容包括系统建模、负荷预测、优化算法设计(如智能优化算法)以及多场景仿真验证,重点分析不同需求响应机制下系统的经济性和运行特性,并通过Matlab编程实现模型求解结果可视化,为实际工程应用提供理论支持和技术路径。; 适合人群:具备一定电力系统、能源工程或自动化背景的研究生、科研人员及从事综合能源系统优化工作的工程师;熟悉Matlab编程且对需求响应、储能优化等领域感兴趣的技术人员。; 使用场景及目标:①用于高校科研中关于冰蓄冷系统需求响应协同优化的课题研究;②支撑企业开展楼宇能源管理系统、智慧园区调度平台的设计仿真;③为政策制定者评估需求响应措施的有效性提供量化分析工具。; 阅读建议:建议读者结合文中Matlab代码逐段理解模型构建算法实现过程,重点关注目标函数设定、约束条件处理及优化结果分析部分,同时可拓展应用其他智能算法进行对比实验,加深对系统优化机制的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值