基于RNN的Attention机制

注意力机制通过选择关键信息提高神经网络效率,尤其在RNN的seq2seq模型中,通过编码器和解码器非线性模型,关注整体与局部信息。基于RNN的Attention机制解决了长距离依赖问题,强化学习和梯度下降可用于优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、注意力机制:

1、为什么会产生注意力机制

前馈网络和循环网络都有很强的能力。但为什么还要引入注意力机制呢?

1)计算能力的限制:当要记住很多“信息“,模型就要变得更复杂,然而目前计算能力依然是限制神经网络发展的瓶颈

2)优化算法的限制:虽然局部连接、权重共享以及pooling等优化操作可以让神经网络变得简单一些,有效缓解模型复杂度和表达能力之间的矛盾;但是,如循环神经网络中的长距离以来问题,信息“记忆”能力并不高。

可通过Attention机制只 选择一些关键的信息输入进行处理,来提高神经网络的效率。

2、注意力机制有哪些?

1) 聚焦式(focus)注意力:自上而下的有意识的注意力,主动注意——是指有预定目的、依赖任务的、主动有意识地聚焦于某一对象的注意力;

2) 显著性(saliency-based)注意力:自下而上的有意识的注意力,被动注意——基于显著性的注意力是由外界刺激驱动的注意,不需要主动干预,也和任务无关;可以将max-pooling和门控(gating)机制来近似地看作是自下而上的基于显著性的注意力机制。

在人工神经网络中,注意力机制一般就特指聚焦式注意力。

参考:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值