题目:
有一颗二叉树,最大深度为d,且所有叶子的深度都相同。所有节点从上到下从左到右编号为1,2,3,...,2^d-1。
在节点1处放置一个小球,它会往下落。每个内节点上都有一个开关,初始全都关闭,当每次有小球落到一个开关上时,
他的状态都会改变。当小球到达一个内节点时,如果该节点上的开关关闭,则往左走,否则往右走,直到走到叶子节点。
如图:
现在有一些小球从节点1处一次开始下落,最后一个小球将会落在哪里呢?输入叶子深度d和小球个数num,输出第num个小球最后所在的叶子编号。
假设num不超过整棵树的叶子个数,d<=20,最多输入包含1000组数据。
样例输入:
4 2
3 4
16 12345
样例输出:
12
7
36358
分析:
* 1,利用二叉树的特性,一个节点k的左子节点是2k,右子节点是2k+1。
* 2,num不超过整棵树的叶子个数,即num要小于二叉树的节点树,满二叉树的节点数是:2^层数-1
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
int s[1024];
int main()
{
int D,I;
int k,n;
int i;
while(scanf("%d%d",&D,&I) == 2)
{
memset(s,0,sizeof(s)); //开关
n = (1 << D) - 1; //n是最大节点编号
for(i = 0; i < I; i++)
{ //连续让I个小球下落
k = 1;
for(;;)
{
s[k] = !s[k];
k = s[k]? k * 2: k * 2 + 1; //根据开关状态选择下落方向
if(k > n) break; //已经落"出界"了
}
}
printf("%d\n",k/2);
}
return 0;
}