动态规划——最优二叉查找树

动态规划——最优二叉查找树

分类: 初识算法  3734人阅读 评论(3) 收藏 举报

1,问题描述:给定一个有序序列K={k1<k2<k3<,……,<kn}和他们被查询的概率P={p1,p2,p3,……,pn},要求构造一棵二叉查找树T,使得查询所有元素的总的代价最小。对于一个搜索树,当搜索的元素在树内时,表示搜索成功。当不在树内时,表示搜索失败,用一个“虚叶子节点”来标示搜索失败的情况,因此需要n+1个虚叶子节点{d0<d1<……<dn}。其中d0表示搜索元素小于k1的失败结果,dn表示搜索元素大于kn的失败情况。di(0<i<n)表示搜索节点在ki和k(i+1)之间时的失败情况。对于应di的概率序列是Q={q0,q1,……,qn}。

2,问题分析:

在二叉树中T内搜索一次的期望代价为:

E[T]=

         (depth(ki)+1)*pi  //对每个i=1~n,搜索成功情况

       +(depth(di)+1)*qi //对每个i=0~n,搜索失败情况

3,问题求解:动态规划

步骤一:寻找最优子结构。

一个最优二叉树的子树必定包含连续范围的关键字ki~kj,1<=i<=j<=n,同时也必须含有连续的虚叶子节点di-1~dj。

如果一棵最优二叉查找树T有一棵含有关键字ki~kj的子树T',那么,T'也是一棵最优查找树,这通过剪贴思想可以证明。

现在开始构造最优子结构:在ki~kj中,选定一个r,i<=r<=j,使以kr为根,ki~k(r-1)和k(r+1)~kj为左右孩子的最优二叉树。注意r=i或者r=j的情况,表示左子树或右子树只有虚叶子节点。

步骤二:一个递归解。

定义e[i,j]为一棵包含关键字ki~kj的最优二叉树的期望代价。当j=i-1时没有真实的关键在,只有虚叶子节点d(i-1)。

于是:

当j=i-1时,e[i,i-1]=q(i-1)。

当j>=i时,需要选择合适的kr作为根节点,然后其余节点ki~K(r-1)和k(r+1)~kj构造左右孩子。这时要考虑左右孩子这些节点成为一个节点的子树后,它的搜索代价的变化:根据E[T]的计算,得知它们的期望代价增加了“子树中所有概率的总和”w。

w[i,j]=

          pl // 对每个l=i~j

        +ql //对每个l=i-1~j

于是当j>=i时,e[i,j]=pr + (e[i,r-1]+w[i,r-1])+(e[r+1,j]+w[r+1,j]) = e[i,r-1] + e[r+1,j]+w[i,j];

步骤三:计算最优二叉树的期望代价

 

e[i,j]=

          q(i-1)  //如果j=i-1

          min(e[i,r-1] + e[r+1,j]+w[i,j]),如果i<=j,其中i<=r<=j

w[i,j] =

           q(i-1) 如果j=i-1

            w[i,j]=w[i,j-1]+pj+qj 如果i<=j

实现代码如下:

  1. 1 #include <iostream>  
  2. using namespace std;  
  3. 3   
  4. 4 #define MAXNUM 100  
  5. 5 #define MAX 65536  
  6. //p中为有序关键字k1到k5的搜索概率,k1<k2<k3<k4<k5  
  7. double p[MAXNUM] = {0.00,0.15,0.10,0.05,0.10,0.20};  
  8. double q[MAXNUM] = {0.05,0.10,0.05,0.05,0.05,0.10};  
  9. void optimal_bst(double e[][MAXNUM],int root[][MAXNUM],double w[][MAXNUM],int n)  
  10. 10 {  
  11. 11         int i =0,j=0;  
  12. 12         //针对左或右孩子为空树情况初始化  
  13. 13         for(i = 1;i<=n+1;i++)  
  14. 14         {  
  15. 15                 e[i][i-1] = q[i-1];  
  16. 16                 w[i][i-1] = q[i-1];  
  17. 17         }  
  18. 18         int l = 0;  
  19. 19         //计算顺序如下:根据计算式:e[i,j] = e[i,r-1]+e[r+1,j  
  20.              首先计算节点个数为1的最优二叉树的代价e[1,1],e[2,2]……  
  21.              接着计算节点个数为1的最优二叉树的代价e[1,2],e[2,3]……  
  22.              ……  
  23.              最后计算结点个数为n的最优二叉树的代价e[1,n],利用之前保存的较少结点最优二叉树的结果。  
  24. 20         for(l = 1;l<=n;l++)  
  25. 21         {  
  26. 22                 for(i = 1;i<=n-l+1;i++)  
  27. 23                 {  
  28. 24                         j = i+l-1;  
  29. 25                         e[i][j] = MAX;  
  30. 26                         w[i][j] = w[i][j-1] + p[j]+q[j];  
  31. 27                         for(int r = i;r<=j;r++)  
  32. 28                         {  
  33. 29                                 double t = 0;  
  34. 30                                 t = e[i][r-1]+e[r+1][j] + w[i][j];  
  35. 31                                 if(t<e[i][j])  
  36. 32                                 {  
  37. 33                                         e[i][j]= t;  
  38. 34                                         root[i][j] = t;  
  39. 35                                 }  
  40. 36                         }  
  41. 37   
  42. 38                 }  
  43. 39         }  
  44. 40   
  45. 41 }  
  46. 42 int main()  
  47. 43 {  
  48. 44         double e[MAXNUM][MAXNUM];  
  49. 45         int root[MAXNUM][MAXNUM];  
  50. 46         double w[MAXNUM][MAXNUM];  
  51. 47   
  52. 48         optimal_bst(e,root,w,5);  
  53. 49   
  54. 50         for(int i =1;i<=6;i++)  
  55. 51         {  
  56. 52                 for(int j = 0;j<=5;j++)  
  57. 53                 {  
  58. 54                         cout << e[i][j] << "  ";  
  59. 55                 }  
  60. 56                 cout << endl;  
  61. 57         }  
  62. 58 }


 

最优二叉查找树

分类: 算法   1613人阅读  评论(0)  收藏  举报

http://blog.csdn.net/clearriver/article/details/4212830

http://blog.csdn.net/taesimple/article/details/6588080

问题描述(详见算法导论P212-P213)

对于给定关键字序列,构造一颗最优的二叉查找树T,使得在T内的一次搜索的期望代价最小


前提概念

  • 一颗最优二叉树不一定是一颗整体高度最小的树;也不一定总把具有最大概率的关键字作为根节点
  • 二叉查找树的子树必定包含连续范围内的关键字
  • 当一颗树成为一个节点的子树时,它的期望代价增加值为该树中所有概率的总和

最优子结构
设包含有序关键字(ki, ..., kj)的最优二叉查找树以kr(i≤r≤j)为根节点,则其左子树(ki, ..., kr-1)和右子树(kr+1, ..., kj)也同样为最优二叉查找树

递归表达式
作如下定义
  • 给定一个由n个互异关键字(k1, ..., kn)组成的序列K,且关键字有序(k1<...<kn)。对每个关键字ki,一次搜索为ki的概率是pi。某些搜索值可能不在K内,因此还有n+1个”虚拟键“d0, d1, ..., dn代表不在K内的值,且ki≤di≤ki+1,di概率为qi
  • e[i, j]:最优二叉查找树(ki, ..., kj)的期望代价
  • w[i, j]:最优二叉查找树(ki, ..., kj)的概率总和,即∑p+∑q(p:i~j q:i-1~j)
  • root[i, j]:记录最优二叉查找树(ki, ..., kj)的根节点的序号,用于构造问题最优解
  • 当j=i-1时,表示只有虚拟键di-1,此时e[i, i-1] = w[i, i-1] = qi
递归表达式如下(推导过程见算法导论P214-P215)


自底向上的求解
求解过程类似于矩阵链乘法问题

构造最优解
根据矩阵ROOT中记录的值进行构造

1,问题描述:给定一个有序序列K={k1<k2<k3<,……,<kn}和他们被查询的概率P={p1,p2,p3,……,pn},要求构造一棵二叉查找树T,使得查询所有元素的总的代价最小。对于一个搜索树,当搜索的元素在树内时,表示搜索成功。当不在树内时,表示搜索失败,用一个“虚叶子节点”来标示搜索失败的情况,因此需要n+1个虚叶子节点{d0<d1<……<dn}。其中d0表示搜索元素小于k1的失败结果,dn表示搜索元素大于kn的失败情况。di(0<i<n)表示搜索节点在ki和k(i+1)之间时的失败情况。对于应di的概率序列是Q={q0,q1,……,qn}。

2,问题分析:

在二叉树中T内搜索一次的期望代价为:

E[T]=

         (depth(ki)+1)*pi  //对每个i=1~n,搜索成功情况

       +(depth(di)+1)*qi //对每个i=0~n,搜索失败情况

3,问题求解:动态规划

步骤一:寻找最优子结构。

一个最优二叉树的子树必定包含连续范围的关键字ki~kj,1<=i<=j<=n,同时也必须含有连续的虚叶子节点di-1~dj。

如果一棵最优二叉查找树T有一棵含有关键字ki~kj的子树T',那么,T'也是一棵最优查找树,这通过剪贴思想可以证明。

现在开始构造最优子结构:在ki~kj中,选定一个r,i<=r<=j,使以kr为根,ki~k(r-1)和k(r+1)~kj为左右孩子的最优二叉树。注意r=i或者r=j的情况,表示左子树或右子树只有虚叶子节点。

步骤二:一个递归解。

定义e[i,j]为一棵包含关键字ki~kj的最优二叉树的期望代价。当j=i-1时没有真实的关键在,只有虚叶子节点d(i-1)。

于是:

当j=i-1时,e[i,i-1]=q(i-1)。

当j>=i时,需要选择合适的kr作为根节点,然后其余节点ki~K(r-1)和k(r+1)~kj构造左右孩子。这时要考虑左右孩子这些节点成为一个节点的子树后,它的搜索代价的变化:根据E[T]的计算,得知它们的期望代价增加了“子树中所有概率的总和”w。

w[i,j]=

          pl // 对每个l=i~j

        +ql //对每个l=i-1~j

于是当j>=i时,e[i,j]=pr + (e[i,r-1]+w[i,r-1])+(e[r+1,j]+w[r+1,j]) = e[i,r-1] + e[r+1,j]+w[i,j];

步骤三:计算最优二叉树的期望代价

 

e[i,j]=

          q(i-1)  //如果j=i-1

          min(e[i,r-1] + e[r+1,j]+w[i,j]),如果i<=j,其中i<=r<=j

w[i,j] =

           q(i-1) 如果j=i-1

            w[i,j]=w[i,j-1]+pj+qj 如果i<=j


[cpp]  view plain copy
  1. 1 #include <iostream>  
  2. using namespace std;  
  3. 3   
  4. 4 #define MAXNUM 100  
  5. 5 #define MAX 65536  
  6. //p中为有序关键字k1到k5的搜索概率,k1<k2<k3<k4<k5  
  7. double p[MAXNUM] = {0.00,0.15,0.10,0.05,0.10,0.20};  
  8. double q[MAXNUM] = {0.05,0.10,0.05,0.05,0.05,0.10};  
  9. void optimal_bst(double e[][MAXNUM],int root[][MAXNUM],double w[][MAXNUM],int n)  
  10. 10 {  
  11. 11         int i =0,j=0;  
  12. 12         //针对左或右孩子为空树情况初始化  
  13. 13         for(i = 1;i<=n+1;i++)  
  14. 14         {  
  15. 15                 e[i][i-1] = q[i-1];  
  16. 16                 w[i][i-1] = q[i-1];  
  17. 17         }  
  18. 18         int l = 0;  
  19. 19         //计算顺序如下:根据计算式:e[i,j] = e[i,r-1]+e[r+1,j  
  20.              首先计算节点个数为1的最优二叉树的代价e[1,1],e[2,2]……  
  21.              接着计算节点个数为1的最优二叉树的代价e[1,2],e[2,3]……  
  22.              ……  
  23.              最后计算结点个数为n的最优二叉树的代价e[1,n],利用之前保存的较少结点最优二叉树的结果。  
  24. 20         for(l = 1;l<=n;l++)  
  25. 21         {  
  26. 22                 for(i = 1;i<=n-l+1;i++)  
  27. 23                 {  
  28. 24                         j = i+l-1;  
  29. 25                         e[i][j] = MAX;  
  30. 26                         w[i][j] = w[i][j-1] + p[j]+q[j];  
  31. 27                         for(int r = i;r<=j;r++)  
  32. 28                         {  
  33. 29                                 double t = 0;  
  34. 30                                 t = e[i][r-1]+e[r+1][j] + w[i][j];  
  35. 31                                 if(t<e[i][j])  
  36. 32                                 {  
  37. 33                                         e[i][j]= t;  
  38. 34                                         root[i][j] = t;  
  39. 35                                 }  
  40. 36                         }  
  41. 37   
  42. 38                 }  
  43. 39         }  
  44. 40   
  45. 41 }  
  46. 42 int main()  
  47. 43 {  
  48. 44         double e[MAXNUM][MAXNUM];  
  49. 45         int root[MAXNUM][MAXNUM];  
  50. 46         double w[MAXNUM][MAXNUM];  
  51. 47   
  52. 48         optimal_bst(e,root,w,5);  
  53. 49   
  54. 50         for(int i =1;i<=6;i++)  
  55. 51         {  
  56. 52                 for(int j = 0;j<=5;j++)  
  57. 53                 {  
  58. 54                         cout << e[i][j] << "  ";  
  59. 55                 }  
  60. 56                 cout << endl;  
  61. 57         }  
  62. 58 }   

动态规划方法生成最优二叉查找树

1、概念引入

  基于统计先验知识,我们可统计出一个数表(集合)中各元素的查找概率,理解为集合各元素的出现频率。比如中文输入法字库中各词条(单字、词组等)的先验概率,针对用户习惯可以自动调整词频——所谓动态调频、高频先现原则,以减少用户翻查次数。这就是最优二叉查找树问题:查找过程中键值比较次数最少,或者说希望用最少的键值比较次数找到每个关键码(键值)。为解决这样的问题,显然需要对集合的每个元素赋予一个特殊属性——查找概率。这样我们就需要构造一颗最优二叉查找树。
 
2、问题给出
  n个键{a1,a2,a3......an},其相应的查找概率为{p1,p2,p3......pn}。构成最优BST,表示为T 1 n ,求这棵树的平均查找次数C[1, n](耗费最低)。换言之,如何构造这棵最优BST,使得
C[1, n] 最小。
 
3、分段方法
   
    动态规划法策略是将问题分成多个阶段,逐段推进计算,后继实例解由其直接前趋实例解计算得到。对于最优BST问题,利用减一技术和最优性原则,如果前n-1个节点构成最优BST,加入一个节点 an 后要求构成规模n的最优BST。按 n-1, n-2 , ... , 2, 1 递归,问题可解。自底向上计算:C[1, 2]→C[1, 3] →... →C[1, n]。为不失一般性用
C[i, j] 表示由{a1,a2,a3......an}构成的BST的耗费。其中1≤i ≤j ≤n。这棵树表示为Tij。从中选择一个键ak作根节点,它的左子树为Tik-1,右子树为Tk+1j。要求选择的k 使得整棵树的平均查找次数C[i, j]最小。左右子树递归执行此过程。(根的生成过程)
 
 4、递推计算式
 

 

  5、基本算法如下
  

6、具体实现代码(其中所有数据都存放在2.txt中,其内容为:

其中5表示有5个节点,其他数据表示各个节点出现的概率;

复制代码
 1 #include<stdio.h>
 2 #include<stdlib.h>
 3 #define max 9999
 4 void OptimalBST(int,float*,float**,int**);
 5 void OptimalBSTPrint(int,int,int**);
 6 void main()
 7 {
 8     int i,num;
 9     FILE *point;
10     //所有数据均从2.txt中获取,2.txt中第一个数据表示节点个数;从第二个数据开始表示各个节点的概率
11     point=fopen("2.txt","r");
12     if(point==NULL)
13     {
14         printf("cannot open 2.txt.\n");
15         exit(-1);
16     }
17     fscanf(point,"%d",&num);
18     printf("%d\n",num);
19     float *p=(float*)malloc(sizeof(float)*(num+1));
20     for(i=1;i<num+1;i++)
21         fscanf(point,"%f",&p[i]);
22     //创建主表;
23     float **c=(float**)malloc(sizeof(float*)*(num+2));
24     for(i=0;i<num+2;i++)
25         c[i]=(float*)malloc(sizeof(float)*(num+1));
26     //创建根表;
27     int **r=(int**)malloc(sizeof(int*)*(num+2));
28     for(i=0;i<num+2;i++)
29         r[i]=(int*)malloc(sizeof(int)*(num+1));
30     //动态规划实现最优二叉查找树的期望代价求解。。
31     OptimalBST(num,p,c,r);
32     printf("该最优二叉查找树的期望代价为:%f \n",c[1][num]);
33     //给出最优二叉查找树的中序遍历结果;
34     printf("构造成的最优二叉查找树的中序遍历结果为:");
35     OptimalBSTPrint(1,4,r);
36 
37 }
38 void OptimalBST(int num,float*p,float**c,int**r)
39 {
40     int d,i,j,k,s,kmin;
41     float temp,sum;
42     for(i=1;i<num+1;i++)//主表和根表元素的初始化
43     {
44     
45         c[i][i-1]=0;
46         c[i][i]=p[i];
47         r[i][i]=i;
48     }
49     c[num+1][num]=0;
50     for(d=1;d<=num-1;d++)//加入节点序列
51     {
52         for(i=1;i<=num-d;i++)
53         {
54             j=i+d;
55             temp=max;
56             for(k=i;k<=j;k++)//找最优根
57             {
58                 if(c[i][k-1]+c[k+1][j]<temp)
59                 {
60                     temp=c[i][k-1]+c[k+1][j];
61                     kmin=k;
62                 }
63             }
64             r[i][j]=kmin;//记录最优根
65             sum=p[i];
66             for(s=i+1;s<=j;s++)
67                 sum+=p[s];
68             c[i][j]=temp+sum;
69         }
70     }
71 }
72 //采用递归方式实现最优根的输出,最优根都是保存在r[i][j]中的。。。
73 void OptimalBSTPrint(int first,int last,int**r)
74 {
75 
76     int k;
77     if(first<=last)
78     {
79         k=r[first][last];
80         printf("%d  ",k);
81         OptimalBSTPrint(first,k-1,r);
82         OptimalBSTPrint(k+1,last,r);
83     }
84 }
复制代码

7、最终运行结果:

8、参考文献:

(1)算法导论

(2)数据结构 严蔚敏

(3)网上下载的一个ppt(算法设计与分析,第八章)


  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值