【算法】最优二叉查找树

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

#include<iostream>
using namespace std;

double C[20][20];  // 最优二叉树的平均比较次数矩阵 
int R[20][20];  // 根结点矩阵 

// 最优二叉查找树 
double OptimalBST(double p[],int n) // 传入字符的查找概率p[n] 
{
	// 初始化主对角线和第一条次对角线 
	for(int i=1;i<=n;i++){ // 行(1~n+1) 
		C[i][i-1] = 0;
		C[i][i] = p[i-1]; // 字符对应的概率p[i-1] 
		R[i][i] = i;
	} 
	C[n+1][n] = 0; // 主对角线的最后一个元素置0
	// 按对角线逐条计算 
	for(int d=1;d<n;d++){ 
		for(int i=1;i<=n-d;i++){  // 该对角线上元素的横坐标 
			int j = i+d;  // 元素对应的列号 
			double min = 999; 
			int mink = i; // 最优情况对应的根结点k 
			double sum = 0;
			// 二叉树T(i,j)中取根结点 k(i ≤k ≤j) 
			for(int k=i;k<=j;k++){
				sum = sum + p[k-1]; // p[k-1]为第i个元素的查找概率,注意数组下标从0开始 
				if(C[i][k-1]+C[k+1][j]<min){
					min = C[i][k-1]+C[k+1][j];
					mink = k;
				}
			}
			C[i][j] = min+sum;
			R[i][j] = mink; 
		}
	} 
	return C[1][n]; // 最优平均查找次数 
}

int main()
{
	char s[4]  = {'A','B','C','D'};
	double p[4] = {0.1,0.2,0.4,0.3};
	cout<<"最优二叉树的平均比较次数:"<<OptimalBST(p,4)<<endl;
	cout<<"对应的根结点根结点:"<<s[R[1][4]-1]<<endl;
	
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值