
机器学习
观月执白
春秋诗礼号儒身
封剑无为求道真
三世菩提修罗命
江湖观月执白人
展开
-
简单的Tensorflow(7):tensorboard的简单使用
tensorboard是tensorflow的可视化面板,这种效果很像电路设计中的电路图,但又有些很不像设计图而更接近效果图(做过电路设计的可能深有感触)。为了使效果图更好看一些,这里需要使用tensorflow.name_scope()定义一些命名空间。最后用tensorflow.summary.FileWriter("logs/",tensorflow.Session().grap原创 2017-11-30 07:13:11 · 375 阅读 · 0 评论 -
简单的Tensorflow(6):MNIST数据集的简单应用
The MNIST database的全称是Mixed National Institute of Standards and Technology database是一个手写数字数据库,它有60000个训练样本集和10000个测试样本集。它是NIST数据库的一个子集,可以用来做手写数字识别的训练和测试数据集。可以到官网下载http://yann.lecun.com/exdb/mnist/。这原创 2017-11-30 06:34:21 · 416 阅读 · 0 评论 -
简单的Tensorflow(5):回归分析
至于什么是线性和非线性,最早出现在信号系统当中,是针对齐次性,叠加性等提出的,不懂的简单理解是直线即可。要对一堆数据进行模型分析,当我们看到一堆这样的数据时,第一反应这绝壁是一个二次函数。首先我们来实现这些函数的实现:这里需要引入一个numpy库设置一个一维数组,让这个数组是呈等价递增,并增加一个维度,可以理解为上图中的x轴。x_data = numpy.linspace(原创 2017-11-29 11:07:15 · 696 阅读 · 0 评论 -
简单的Tensorflow(4):线性模型分析
首先明确我们要做的事:产生一个y = k * x + b的模型,然后模拟得到k和b的值。使用numpy产生100个随机点x_data = np.random.rand(100)使用numpy产生随机点的波动值y_data = x_data * 0.8 + (0.2 + 0.2*np.random.rand(100))构造这个线性模型b = tf.Variab原创 2017-11-29 10:38:03 · 457 阅读 · 0 评论 -
简单的Tensorflow(3):使用feed_dict字典填充
tensorflow还提供字典填充函数,使输入和输出更为简单:feed_dict = {}。例如:需要吧8和2填充到字典中,就需要占位符tensorflow.placeholder()而非变量,input1 = tf.placeholder(tf.float32),因为是一个元素不需要矩阵相乘,只要简单的乘法即可:tensorflow.multiply()全部代码:import原创 2017-11-29 09:21:57 · 18988 阅读 · 0 评论 -
简单的Tensoflow(2):实现简单的循环计数
tensorflow提供很简单的设置变量的方法tensorflow.Variable(),state = tf.Variable(0,name = 'counter'),创建一个加一操作也是很简单new_value = tensorflow.add(state,1),而我们执行像C++一样的自增时需要用到另外一个函数:assign(),update = tensorflow.assign(st原创 2017-11-29 09:05:17 · 650 阅读 · 0 评论 -
简单的Tensoflow(1):创建两个向量并进行矩阵相乘
tensorflow提供很简单的创建常量的方法:tensorflow.constant(),例如创建一个2x1的列向量m1 = tensorflow.constant([2,3]),创建一个1x2的行向量m2 = tensorflow.constant([[3],[3]])然后两个矩阵相乘又是很简单的操作:product = tensorflow.matmul(m1,m2)。但是此时打原创 2017-11-29 08:29:28 · 1724 阅读 · 0 评论 -
机器学习5:评估器estimator
要定义与tf.estimator一起使用的自定义模型,需要使用tf.estimator.Estimator。 tf.estimator.LinearRegressor()线性回归实际上是一个tf.estimator.Estimator的子类。 我们只是给Estimator提供了一个函数model_fn,它告诉tf.estimator如何评估预测,训练步骤和损失,而不是分类Estimator原创 2017-09-21 21:35:45 · 4242 阅读 · 0 评论 -
机器学习4:简单的线性模型(二)
TensorFlow提供了优化器,缓慢地改变每个变量,以便最小化损失函数。 最简单的优化器是梯度下降(gradient descent)。 它根据相对于该变量的损失导数的大小修改每个变量。 通常,手动计算符号导数是冗长乏味且容易出错的。 因此,TensorFlow可以使用函数tf.gradients自动生成仅给出模型描述的导数。原创 2017-09-21 20:59:07 · 286 阅读 · 0 评论 -
机器学习3:简单的线性模型(一)
tf.constant()表示常量,常用于定义常量,tf.constant(3.0, dtype = tf.float32),前一个参数是数值,后一个是类型,也可以这样用,tf.constant('Hello TensorFlow')表示定义了一个字符串常量。tf.add()表示调用一个加法算法,参数可以是常数,也可以是列表。tf.Session()创建一个Session对象,然后调用其运原创 2017-09-21 01:08:43 · 449 阅读 · 0 评论 -
机器学习2:开始Tensorflow之旅
DistBelief从2011年开始,Google Brain建立DistBelief作为他们的第一代专有的机器学习系统。50多个团队在Google和其他Alphabet公司在商业产品部署了DistBelief的深度学习神经网络,包括Google搜索、Google语音搜索、广告、Google 相册、Google地图、Google街景、Google翻译和YouTube。Google指派计算机科学原创 2017-09-20 17:11:28 · 464 阅读 · 0 评论 -
机器学习1:统计基础之概率论
概率论基本概念简介样本空间 将随机实验 E 的一切可能基本结果组成的集合称为 E 的样本空间,记为 S。样本空间的元素,即 E 的每一个可能的结果,称为样本点。样本空间又叫基本事件空间。 例:程序员用户的学历 S={‘研究生或以上’,‘本科’,‘大专’,‘高中’,‘中专’,‘初中及以下’},A={‘研 究生或以上’,‘本科’,‘大专’} 事件 事件 A原创 2017-08-15 03:50:16 · 977 阅读 · 0 评论