题目链接:
http://acm.hdu.edu.cn/showproblem.php?pid=4405
解题思路:
题目大意: 并排的0~n的格子,起始点在0,每次向前走时都要掷骰子1~6,得到x,之后往前走x步,还有一些特殊的连接xi,yi, 如果到达xi就直接跳到yi不用掷骰子,求到达>=n掷骰子的次数的期望。
算法思想:
求概率正推,求期望反推。
式子很明显,E(w) 表示当前在w这个格子要达到条件(>=n)掷骰子次数的期望
如果存在(xi, yi),使得 w == xi, 则E(w) = E(yi) , 否则E(w) = ∑(E(w+i)/6) + 1 ,i从1到6
之后从后往前递推即可,答案就是E(0).
AC代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <map>
#include <algorithm>
using namespace std;
map<int,int> mm;
double dp[100005];
int main(){
int n,m;
while(~scanf("%d%d",&n,&m),n+m){
mm.clear();
int x,y;
for(int i = 0; i < m; i++){
scanf("%d%d",&x,&y);
mm[x] = y;
}
memset(dp,0,sizeof(dp));
for(int i = n-1; i >= 0; i--){
if(mm[i])
dp[i] = dp[mm[i]];//走捷径
else{
for(int j = 1; j <= 6; j++)
dp[i] += 1.0/6*(dp[i+j]+1);//到达i的状态是由(i+1....i+6)来的
}
}
printf("%.4lf\n",dp[0]);
}
return 0;
}