hdu4118 Holiday's Accommodation(树形dp)

hdu4118

题目

给你一棵树,树的边有边权,每个节点代表一个人,每个人都要到另一个人的家里且两个人不能同时在一个点,且走的路是最短的路,问走的最多路程的情况的路程是多少。

思路

这道题着眼点不能放到点上,我们要看边,对于一条边,两端有点经过它,考虑点比较少的那一端,经过这条边的点数最多就是少的那端乘以2(出来多少就进去多少,且要根据少的那端的容量),为了让这条边利用最大化,我们就让结果加上2*少的点数*边权,接着就是树形dp了。记得加爆栈代码以及long long。

代码

#pragma comment(linker, "/STACK:10240000000000,10240000000000")
#include <cstdio>
#include <algorithm>
#include <vector>
#include <cstring>
#include <iostream>
#include <stack>
#include <queue>

using namespace std;

typedef long long ll;

const int maxn=1e5+10;

int tot,head[maxn],n,num[maxn];
ll ans;

struct node
{
    int next;
    int to;
    int w;
} edge[maxn*2];

void addedge(int from,int to,int w)
{
    edge[tot].to=to;
    edge[tot].next=head[from];
    edge[tot].w=w;
    head[from]=tot++;
}

void dfs(int u,int fa)
{
    num[u]=1;
    int v,w;
    for(int i=head[u]; ~i; i=edge[i].next)
    {
        v=edge[i].to;
        w=edge[i].w;
        if(v==fa) continue;
        dfs(v,u);
        num[u]+=num[v];
        ans+=2*w*(min(n-num[v],num[v]));
    }
}

int main()
{
    int T;
    scanf("%d",&T);
    int kase=1;
    while(T--)
    {
        memset(head,-1,sizeof(head));
        tot=0;
        ans=0;
        scanf("%d",&n);
        for(int i=0; i<n-1; i++)
        {
            int a,b,c;
            scanf("%d %d %d",&a,&b,&c);
            addedge(a,b,c);
            addedge(b,a,c);
        }
        dfs(1,-1);
        printf("Case #%d: %I64d\n",kase++,ans);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值