hdu4800 Josephina and RPG(概率dp)

,##hdu4800

题目

告诉你有m个人物,三个人可以组一个队,那么有C(m,3)种组队方法,给一个矩阵列出每个队伍之间的胜率,再告诉你有n支ai队伍以及他们的队伍编号,现在你一开始可以任选一支队伍,然后按顺序和每支ai进行比赛,你赢了ai可以选择要不要与它换队伍来进行下一场的比赛,求最大的胜率。

思路

还是好菜啊,一开始状态就设计错了,没有体现后效性,dp[i][j]表示打赢第i支ai队伍的是第j队,这样就保证了不会影响后面的队伍,然后枚举转移就行了。
(我后面竟然还写了个if更新胜率高的,这是dp额,换不换队伍并不是当前能决定的,要保存状态啊大哥!搞事情。。。。。。。)

代码

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <algorithm>
#include <cstring>

double dp[10010][130];
double rate[130][130];
int fact[15],n,m;
int ai[10010],num;

void init()
{
    fact[1]=1;
    for(int i=2; i<=15; i++) fact[i]=fact[i-1]*i;
}

int C(int n,int m)
{
    return fact[n]/(fact[n-m]*fact[m]);
}

using namespace std;

int main()
{
    init();
    while(scanf("%d",&m)!=EOF)
    {
        memset(dp,0,sizeof(dp));
        if(m==3) m=1;
        else
            m=C(m,3);
        for(int i=0; i<m; i++)
            for(int j=0; j<m; j++)
                scanf("%lf",&rate[i][j]);
        scanf("%d",&num);

        for(int i=1; i<=num; i++)
            scanf("%d",&ai[i]);

        for(int i=0; i<m; i++)
            dp[1][i]=rate[i][ai[1]];
        for(int i=2; i<=num; i++)
            for(int j=0; j<m; j++)
            {
                dp[i][j]=max(dp[i][j],dp[i-1][j]*rate[j][ai[i]]);
                dp[i][ai[i-1]]=max(dp[i][ai[i-1]],dp[i-1][j]*rate[ai[i-1]][ai[i]]);
            }
        double ans=0;
        for(int i=0; i<m; i++)
            ans=max(ans,dp[num][i]);
        printf("%.6lf\n",ans);


    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值