【图神经网络学习】记录PyG安装问题

本人深度学习小白,有不足欢迎指出,这里仅仅记录一下自己的安装过程

我的cuda是12.1版本

1.安装pytorch

pytorch可以安装cpu版本和gpu版本,我下的gpu版本(吐槽一句gpu版本是真的下得慢如何准确使用国内源高效安装GPU版本的Pytorch - 知乎

Previous PyTorch Versions | PyTorch

找合适的版本就行,我这里下的2.1.1

2.PyG安装流程

PyG的安装依赖于以下几个核心库:

  • torch-scatter
  • torch-sparse
  • torch-cluster
  • torch-spline-conv
  • torch-geometric

pytorch-geometric.com/whl/index.html根据torch和cuda的版去官网找

我这里是

pip install torch-sparse==0.6.18 -f https://pytorch-geometric.com/whl/torch-2.1.1+cu121.html
pip install torch-scatter -f https://pytorch-geometric.com/whl/torch-2.1.1+cu121.html
pip install torch-cluster -f https://pytorch-geometric.com/whl/torch-2.1.1+cu121.html
pip install torch-spline-conv -f https://pytorch-geometric.com/whl/torch-2.1.1+cu121.html
pip install torch-geometric

### 图网络与图神经网络的关系 #### 定义区分 图网络通常指代一种更广泛的概念,涵盖了所有基于图结构的数据处理方法和技术。而图神经网络(Graph Neural Networks, GNNs)则是机器学习领域内的一种特定类型的模型架构,专门用于处理和分析图形数据[^2]。 #### 结构差异 在传统图网络中,主要关注的是如何有效地存储、查询以及遍历图中的节点和边的信息;而在图神经网络的设计理念下,除了考虑上述方面外,还引入了来自深度学习的思想来自动提取复杂模式并做出预测。具体来说,在GNN框架里通过聚合邻居信息更新节点表征的过程可以视为对原始图结构进行了高层次抽象[^1]。 #### 功能特性对比 对于一般的图网络而言,其功能侧重于解决诸如最短路径查找、社区发现等问题;相反地,当涉及到利用历史交易记录来进行个性化推荐或是识别社交平台上的潜在欺诈行为时,则更适合采用具备强大表达能力的图神经网络解决方案。这是因为后者能够捕捉到隐藏在网络背后的深层次关联性,并据此提供更加精准的结果输出[^3]。 ```python import torch_geometric.nn as pyg_nn class SimpleGNN(torch.nn.Module): def __init__(self): super(SimpleGNN, self).__init__() self.conv1 = pyg_nn.GCNConv(64, 16) def forward(self, data): x, edge_index = data.x, data.edge_index # 应用GCN层进行消息传递 x = self.conv1(x, edge_index) return x ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值