背景
公司有一套大数据解决方案平台,包括数据同步平台、大数据管理平台、数据可视平台、数据监控报警平台等。所有平台是基于apache 的 hadoop 2.6.3、hive 1.2.1、spark 2.0.2 、scala 2.11.8(其他组件暂不详述),现在需要搭建一套新的集群,决定新集群组件采用新的版本,hadoop 3.1.4 、hive 3.1.2 、spark 2.4.7、scala 2.12.13。基于以上组件的升级,数据平台项目需要做同步的升级,在升级过程中,遇到一些api改变、版本不兼容、调用各种异常报错等问题,本篇主要介绍上述组件的兼容如何配置和遇到的问题。
环境
-
hadoop 3.1.4
-
hive 3.1.2
-
spark 2.4.7
-
jdk 1.8.0_271
前提说明
- 版本的选择是参考cdh 、hdp 采用的组件版本组合,同时结合了hive官网给出的hive on spark 对hive和spark匹配测试过的版本组合。spark采用了自编译的方式手动编译的,内置版本不符合我们对hadoop版本和 hive版本的要求
./dev/make-distribution.sh --name "hadoop3-with-hive" --tgz "-Pyarn,hadoop-3.1,scala-2.12,parquet-provided,orc-provided,hive,hive-thriftserver" -Dhadoop.version=3.1.4 -Dscala.version=2.12.13 -Dscala.binary.version=2.12
-
hadoop和hive均从apache官网连接直接下载相关预编译的版本,直接解压安装。
-
hive配置了hive on spark
-
spark 提交方式是在 spark on yarn 的cluster模式下
下面讲的配置和问题都是基于这些前提之下
配置
1、hive server 端
如果配置hive on spark需要配置 hive-site.xml
<property>
<name>hive.execution.engine</name>
<value>spark</value>
<description>
Expects one of [mr, tez, spark].
Chooses execution engine. Options are: mr (Map reduce, default), tez, spark. While MR
remains the default engine for historical reasons, it is itself a historical engine
and is deprecated in Hive 2 line. It may be removed without further warning.
</description>
</property>
需要将编译好spark的jars 目录下的一下jar包复制到$HIVE_HOME/lib 目录下
Hive 执行可能会遇到其他问题,还需要以下两个包,第一个升级guava否则会出现jar包兼容问题,第二个采用mysql来做元数据存储的话需要mysql的driver
2、hadoop server端
$SPARK_HOME/yarn/spark-2.4.7-yarn-shuffle.jar 复制到$HADOOP_HOME/share/hadoop/yarn/lib
3、提交spark任务client配置
sparkConf中资源配置和性能调优不做详细说明,只说兼容相关的配置
3.1指定hive的metastore版本和lib目录,spark自带默认版本是1.2.1
# 配置自定义 metastore 版本和jar包地址(可以配置hdfs,带验证)
spark.sql.hive.metastore.version=3.1.2
spark.sql.hive.metastore.jars=/data/hadoop-3.1.4/metastorelib/*
$HADOOP_HOME目录下创建metastorelib,并把$HIVE_HOME/lib 下jar复制过去,也可以把路径指定到$HIVE_HOME/lib
http://spark.apache.org/docs/2.4.7/sql-data-sources-hive-tables.html#interacting-with-different-versions-of-hive-metastore
3.2 设置分发到executor上的文件
spark.yarn.dist.files=core-site.xml,hive-site.xml,hdfs-site.xml,yarn-site.xml,og4j.properties
spark.yarn.dist.files=xxx.jar
如果有依赖jar包可以配置,我们项目是把所有依赖打到一个jar包了,所以可以不用设置
http://spark.apache.org/docs/2.4.7/running-on-yarn.html
3.3 设置spark依赖
将$SPARK_HOME/lib 达成一个zip文件,上传到hdfs,然后指定以下配置
spark.yarn.archive=hdfs://hadoop3cluster/user/spark/jars/spark.zip
spark任务提交各种报错和jar包冲突,主要集中在zip中的jar里面。后面会详细说明这个针对zip中jar的选择和处理
3.4 spark任务提交方式
Client client = null;
try {
client = new Client(clientArgs, sparkConf);
client.setApplicationId(applicationId); //修改spark源码支持
// 提交application
client.submitApplication();
} finally {
//关闭client连接
try {
if (client != null) {
LOGGER.info("finally stop the spark client.");
client.stop();
}
} catch (Exception e) {
LOGGER.warn("the yarn client stop exception", e);
client = null;
}
}
其中sparkConf自定义参数配置和上面定义的参数配置,clientArgs指定–class 、–jar 等参数
3.5 spark应用
SparkSession sparkSession = SparkSession.builder().config(sparkConf).enableHiveSupport().getOrCreate();
enableHiveSupport() 这一步很重要,很多hive相关配置都可以省掉,后面遇到很多问题,通过查阅资料增加各种配置,事实证明启动了hiveSupport后,那些配置并不需要配置,比如:
spark.sql.catalogImplementation=hive
hive.metastore.warehouse.dir=xxx ##在配置到hdfs上的hive-site.xml中配置即可
hive.metastore.uris=xxxx ##在配置到hdfs上的hive-site.xml中配置即可
spark源码修改
1、spark-hive
修改源码后重新编译spark(我是上传linux服务器,在服务器编译完成),可以只编译spark-sql模块
./dev/make-distribution.sh --name "hadoop3-with-hive" --tgz "-Pyarn,hadoop-3.1,scala-2.12,parquet-provided,orc-provided,hive,hive-thriftserver" -pl :spark-sql_2.11 -Dhadoop.version=3.1.4 -Dscala.version=2.12.13 -Dscala.binary.version=2.12
编译完成后的jar文件是spark-hive_2.11-2.4.7.jar,不确跟最终的spark-hive_2.12-2.4.7.jar是否一样的,为了保险我采用了替换spark-hive_2.12-2.4.7.jar中相关class文件的方式,复制之前编译好的spark-hive_2.12-2.4.7.jar到目录spark-2.4.7_resource/sql/hive/target/scala-2.12/classes下,通过命令替换class文件。举例替换Shim相关class
jar uvf spark-hive_2.12-2.4.7.jar org/apache/spark/sql/hive/client/Shim*
用新的jar,替换上面3.3处zip中的spark-hive_2.12-2.4.7.jar ,并重新上传hdfs
2、hive-exec-1.2.1.spark2.jar 替换
原来spark依赖的hive-exec存在和hive高版本不兼容的问题,使用新版本替换zip中的jar,并重新上传hdfs
遇到的问题
2021-04-22 15:22:35,320 ERROR yarn.ApplicationMaster: User class threw exception: java.lang.ExceptionInInitializerError
java.lang.ExceptionInInitializerError
at org.apache.hadoop.hive.conf.HiveConf.<clinit>(HiveConf.java:105)
at java.lang.Class.forName0(Native Method)
at java.lang.Class.forName(Class.java:348)
at org.apache.spark.util.Utils$.classForName(Utils.scala:238)
at org.apache.spark.sql