batch_size, epochs,iteration参数设置的基本概念

本文详细解析了深度学习中重要的参数batch_size、iteration和epoch。batch_size决定了每次训练所用样本数量,影响训练速度和内存消耗;iteration指使用batch_size训练的次数;epoch则是遍历完整训练集的次数。理解这些概念对于优化模型训练至关重要,需根据计算机性能和数据集大小适当调整。
摘要由CSDN通过智能技术生成

(1)batch_size:
单次训练用的样本数,通常为2^N,如32、64、128…
例如:batch_size=32为每一次载入数据集为32个样本数。
相对于正常数据集,如果过小,训练数据就收敛困难;过大,虽然相对处理速度加快,但所需内存容量增加。
要根据电脑的内存容量进行设定,使用中需要根据计算机性能和训练次数之间平衡。
另:如果batch_size设置为最大,就是原始的梯度下降。
如果batch_size设置为1,则位随机梯度下降。
(2)iteration:
1个iteration等于使用batch_size个的样本训练一次;
例如:iteration=2为每一次batch_size=32载入数据时,迭代训练2次。
(3)epoch:
1个epoch等于使用训练集中的全部样本训练一次;
例如:epoch=4为全部样本训练4次。

例如:训练集中有500个样本,则

batch_size=16,  iteration =10, epoch=5

相当于每训练一次数据集则有500/16等于31.25=32次的载入数据。每载入一次16个样本的数据,就要训练10次;每32次载入数据后,训练5次。
最终每一个epoch运行10*32=320次iteration训练

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值