前言
在新手搭建神经网络时,常弄不清epoch、batch_size、iteration和batch_idx(iteration )的区别。
这里以torchvision自带的CIFAR10数据集来举例,通过代码操作来直观地对这几个概念进行理解。
声明,这里batch_idx==iteration。
数据准备
首先加载数据集:
import torch
import torch.nn as nn
import torchvision
train_dataset = torchvision.datasets.CIFAR10(root="data/",train=True,download=False)
test_dataset = torchvision.datasets.CIFAR10(root

本文介绍了深度学习中重要的概念epoch、batch_size和iteration,通过PyTorch中的CIFAR10数据集举例,解释了它们的关系和作用。batch_size表示每次训练的数据量,batch_idx(或iteration)代表训练的步数,epoch则是一个完整的数据集遍历。理解这些参数对于优化模型训练至关重要。
最低0.47元/天 解锁文章
2万+

被折叠的 条评论
为什么被折叠?



