回溯法——八皇后问题【通俗易懂】

回溯法——八皇后问题【通俗易懂】

因为最近在学习算法,所以今天在这里对回溯法中的八皇后问题,进行一下归纳和总结,真的是用不能再通俗的语言去解释了,看不懂请自绝与人民。

一、基本定义

回溯法(back track method)是在包含问题的所有可能解的解空间树中,从根结点出发,按照深度优先的策略进行搜索,对于解空间树的某个结点,若满足约束条件,则进入该子树继续搜索,否则将以该结点为根结点的子树进行剪枝。

二、适用范围
可避免搜索所有的可能解,适用于求解组合数较大的问题。

三、八皇后问题
问题:在8 x 8的棋盘上摆放8个皇后,而且八个皇后中的任意两个是不能处于同一行、同一列、或同一斜线上。

【分析】
在8 x 8的棋盘上面放置8个皇后,而且还要不在不同一行和不在同一列,不在同一斜线上,所以每行肯定是得放一个,但是位置就有好多的可能,只要满足上面的要求即可。
设棋盘是一个8 x 8矩阵,皇后i和皇后j的摆放位置分别为(i,Xi)和(j,Xj),要想这些皇后不在同一条斜线上,则需要这两个坐标点的斜率不等于 1 或 - 1。
也就是满足|Xj —Xi | ≠ |j – i|
这里采用迭代法解决八皇后问题,迭代就是循环代码中参与运算的变量同时是保存结果的变量,当前保存的结果作为下一次循环计算的初始值。

迭代的代表性例子:实数累加

int v=1;
for(i=2;i<=100;i++)
{
v=v+i; //1 ——100的累加
}
【具体步骤】

1、这里的八个皇后用k = 0,1,2,3,4,5,6,7来表示。
2、第一个皇后放在8 x 8矩阵的(0 , 0)位置,也就是k = 0 ,x[k] = 0 

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值