什么是八皇后
八皇后问题(英文:Eight queens),是由国际象棋棋手马克斯·贝瑟尔于1848年提出的问题,是回溯算法的典型案例。
问题表述为:在8×8格的国际象棋上摆放8个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法。高斯认为有76种方案。1854年在柏林的象棋杂志上不同的作者发表了40种不同的解,后来有人用图论的方法解出92种结果。如果经过±90度、±180度旋转,和对角线对称变换的摆法看成一类,共有42类。计算机发明后,有多种计算机语言可以编程解决此问题。
这个国王好居然有八个皇后
八皇后问题规则
以下是一个棋盘,假设以左上角为原点(1,1),向右为y轴,向下为x轴。八皇后的规则是当放了一颗棋子后,这一横排,竖排,左右斜排都不能再放置了。
如图,假设在(3,4)放一颗棋子。
那么,在(1,2),(1,4),(1,6),(2,3),(2,4),(2,5),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(3,7),(3,8),(4,3),(4,4),(4,5),(5,2),(5,4),(5,6),(6,1),(6,4),(6,7),(7,4),(7,8),(8,4)都不能再放置棋子了。
然后请问当8个棋子都能按上去规则放完,有多少种情况。
以下,就是解法的其中之一,以每一列(y)轴来计,记为: 1 7 4 6 8 2 5 3
解决思路
很明显,这有点类似于数独问题。
解法思路就是:从第一行开始(x轴) 依次搜这行的每一列(y轴) ,如果该坐标没有被标记过,那么记录(1,1)放下了棋子,并且这行,这列,斜排都做一个标记。然后就先在这放第一颗棋子,接下来搜索第二行。
同理,依次搜第二行的每一列,可以得知在放(1,1)的时候,(2,1),(2,2)是不能再放的,所以只能先放(2,3),然后与(2,3)有关的点做标记。接下来搜第三行.....
当某一行,出现全部都不能放的时候,就说明之前的假设有问题,所以就必须返回上一行,在上一行可行的下一个格子放棋子,(若放不了,那么还得再返回)然后继续按上述要求搜索....
当8个棋子都能放完的时候,说明有一种方案成立了,但是还没完,所以把这种方案做记录,然后返回继续搜....
直到所有情况都搜完,那么程序结束。
思路是这样,但是代码怎么去实现呢?
很明显,这是典型的回溯法。
因此,套用回溯法的模板。
void Backtrack(原参数区间/或者参数) {
if(达到目的/或者撞到“南墙”) {
存放结果;//或者输出结果,输出最好调用新函数
return;
}
进行一些操作(根据实际情况可省去);
for(int i=1;i<=子区间个数(换句话说,也就是父亲节点的度);i++) {//或者子参数个数
if(没被记录) {
做记录;//已经搜过就不再搜了
Backtrack(子区间或者下个搜索的参数); //调用子区间或者参数
销毁记录;//搜完,或者撞到南墙,就销毁记录
}
}
}
按照上述思路,是从每一行开始,依次搜每一列。所以大致确定:
代码
int hang[N],lie[N],dia1[N*2],dia2[N*2];
//hang记录每一行,lie记录每一列
//dia1记录左斜,dia2记录右斜
const int n=8;//8皇后
vector<int>queen;//queen代表每一组的8个数
vector<vector<int>>ans;//ans储存最终结果,ans[1]代表第一组,ans[2]代表第二组结果
//做记录
void record(int x,int y) {
queen.push_back(y);
hang[x]=1;lie[y]=1;
dia1[x+y-1]=1;dia2[y-x+n]=1;
}
//清除记录
void derecord(int x,int y) {
hang[x]=0;lie[y]=0;
dia1[x+y-1]=0;dia2[y-x+n]=0;
queen.pop_back();
}
//回溯
void backtrack(int x) {
//当搜到n+1,也就是越界的情况,记录数值并返回
if(x==n+1) {
return;
}
//从1到n开始搜
for(int y=1;y<=n;y++) {
if(!hang[x]&&!lie[y]&&!dia1[x+y-1]&&!dia2[y-x+n]) {
record(x,y);
backtrack(x+1);
derecord(x,y);
}
}
}
int main() {
backtrack(1);
//依次打印结果
for(int i=0;i<ans.size();i++) {
for(int j=0;j<n;j++) {
cout<<ans[i][j]<<" ";
}
cout<<endl;
}
return 0;
}
拓展n皇后问题
n皇后的话,就是把上述的常量n修改为可以输入的值即可,核心代码不变。