题解 SP8075 【SEQN - Sequence】

Solution to SP8075 【SEQN - Sequence】

一道错位排序的裸题。

我们设 f i f_{i} fi 为长度为 i i i 的错排总方案数。按照题目要求,我们从 n n n 个数中选择 n − k n - k nk 个数进行错排 k k k 个对应就是 n − k n - k nk 个不对应),选择总方案数为:

( n k ) × f n − k \dbinom{n}{k} \times f_{n - k} (kn)×fnk

由于:
n ! = ∑ i = 0 n ( n i ) f i n! = \sum_{i = 0}^{n}{\dbinom{n}{i}f_{i}} n!=i=0n(in)fi

我们将它进行转化,二项式反演得:
f n = ∑ i = 0 n ( − 1 ) n − i × ( n i ) × i ! f_{n} = \sum_{i = 0}^{n}{(-1)^{n - i} \times \dbinom{n}{i} \times i!} fn=i=0n(1)ni×(in)×i!

化简得到:
f n = n ! ∑ i = 0 n ( − 1 ) i i ! f_{n} = n!\sum_{i = 0}^{n} \frac{(-1)^ i}{i!} fn=n!i=0ni!(1)i

也就是:
( − 1 ) n + ( − 1 ) n − 1 × n + ( − 1 ) n − 2 × n × ( n − 1 ) … … (-1) ^ n + (-1) ^ {n -1} \times n + (-1) ^ {n - 2} \times n \times(n - 1)…… (1)n+(1)n1×n+(1)n2×n×(n1)

当枚举 m m m 个数时,便可以停止枚举,因为这之后的每个数必定能被 m m m 整除。将 n − k n - k nk 带入上述 f n f_n fn 即可。

关于左边的 ( n k ) \dbinom{n}{k} (kn) ,由于 $ n \le 10^9$ ,我们不能暴力の枚举或筛,这里要用到 exlucas (扩展卢卡斯)求解,具体步骤详见代码。

奉上代码 − − − > ---> >

#include <cstdio>
#include <cctype>
#include <algorithm>
#include <cmath>
#define ll long long
#define inf 0x3f3f3f3f

using namespace std;

inline ll read(){
	ll x=0,w=0;char ch=getchar();
	while (!isdigit(ch))w|=ch=='-',ch=getchar();
	while (isdigit(ch))x=(x<<1)+(x<<3)+ch-'0',ch=getchar();
	return w?-x:x;
}

ll t, a[100005], b[100005], cnt, tot;
ll ans, now;

inline ll ksm(ll x, ll y, ll z){
	ll mm = 1;
	while(y){
		if(y & 1) mm = mm * x % z;
		x = x * x % z;
		y >>= 1; 
	}
	return mm;
}

inline ll F(ll n, ll flo, ll mod){
	if(!n) return 1;
	ll cir = 1;
	ll rem = 1;
	for(ll i = 1; i <= mod; i++){
		if(i % flo) cir = cir * i % mod;
	}
	cir = ksm(cir, n / mod, mod);
	for(ll i = mod * (n / mod); i <= n; i++){
		if(i % flo) rem = rem * (i % mod) % mod;
	}
	return F(n / flo, flo, mod) * cir % mod * rem % mod;
}

inline ll G(ll n, ll mod){
	if(n < mod) return 0;
	return G(n / mod, mod) + (n / mod);
}

inline ll _exgcd(ll aa, ll bb, ll &x, ll &y){
	if(!bb){
		x = 1, y = 0;
		return aa;
	}
	ll d = _exgcd(bb, aa % bb, y, x);
	y -= aa / bb * x;
	return d;
}

inline ll inv(ll w, ll mod){
	ll x, y;
	_exgcd(w, mod, x, y);
	return (x % mod + mod) % mod;
}

inline ll calc(ll n, ll m, ll flo, ll mod){
	ll f1 = F(n, flo, mod), f2 = inv(F(m, flo, mod), mod), f3 = inv(F(n - m, flo, mod), mod);
	ll minn = ksm(flo, G(n, flo) - G(m, flo) - G(n - m, flo), mod);
	return f1 * f2 % mod * f3 % mod * minn % mod;
}

inline ll exlucas(ll n, ll m, ll p){// exlucas
	ll sqr = sqrt(p), w = p;
	for(int i = 2; i <= sqr; i++){
		if(p % i == 0){
			ll now = 1;
			while(w % i == 0){
				w /= i;
				now *= i;
			}
			a[++tot] = now;
			b[tot] = calc(n, m, i, now);
		}
	}
	if(w != 1){
		a[++tot] = w;
		b[tot] = calc(n, m, w, w);
	}
	ll res = 0;
	for(int i = 1; i <= tot; i++){
		w = p / a[i];
		ll q = inv(w, a[i]);
		res = (res + q * w % p * b[i] % p) % p;
	}
	return res;
}

int main(){
	t = read();
	int sum = 0;
	while(t--){
		sum++;
		ll n = read(), k = read(), m = read();
		ans = (n - k) & 1 ? -1: 1;
		ans = (ans + m) % m;
		now = 1;
		for(ll i = n - k - 1; i >= max((ll)0, n - k - m); i--){//处理求和部分
			now = (now * (i + 1)) % m;
			if(!(i & 1)){
				ans = (ans + now) % m;
			}
			else {
				ans = ((ans - now) % m + m) % m;
			}
		}
		tot = 0;
		ll QAQ = exlucas(n, k, m) % m;
		printf("Case %d: %lld\n",sum, QAQ * ans % m);
	}
    return 0;
}

完结撒花✿✿ヽ(°▽°)ノ✿

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值