数据结构_概念理解

本文介绍了数据结构的概念,强调了逻辑结构和存储结构的重要性,并探讨了算法的定义、特性和效率衡量标准,包括时间复杂度和空间复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

1.  数据结构怎么理解?
【从概念定义上】  数据结构是相互之间存在一种或多种特定关系的数据元素的集合。
在任何问题中,数据元素都不是孤立存在的,它们之间存在某种关系,这种数据元素相互之间的关系称为结构。

【从组成内容上】  数据结构包括三方面内容:逻辑结构、存储结构、数据的运算。

学习某一种数据结构的时候,应该先关注它的逻辑结构,应该实现什么样的运算;
最后在确定存储结构之后,再具体的用代码来实现该运算。

一个算法的设计取决于所选定的逻辑结构,而算法的实现依赖于所采用的存储结构(物理结构)。

 

 

 

2. 逻辑结构和存储结构的理解

逻辑结构是指数据元素之间的逻辑关系,是从逻辑关系上描述数据,与数据的存储无关,独立于计算机。

存储结构是数据结构在计算机中的表示(又称映像),也称为物理结构。包括数据元素的表示和关系的表示。
数据的存储结构是用计算机语言实现的逻辑结构,依赖于计算机语言。
 

换句话来说:在存储数据的时候,不仅要存储各数据元素的值,而且要存储数据元素之间的关系。
(比如:数据的操作方法、数据元素的类型、数据的存取方法)

数据采用了何种方式存储,也就决定了如何实现对应的基本操作(增删改查)。

 

 

 

3. 算法这个概念怎么理解?

【从概念定义上】算法是对特定问题求解步骤的一种描述,它是指令的有限序列,其中的每条指令表示一个或多个操作。
【从算法特性上】有穷(步骤有穷、每一步操作时间有穷)、 确定(指令有确切含义,同一输入,相同输出)
                            可行(描述的操作可通过已经实现的基本操作执行有限次实现)、  输入 输出
【好算法目标】 正确性、可读性、健壮性、效率与低存储量需求。

 

 

 

4. 算法效率衡量标准
时间复杂度(执行速度快不快)+空间复杂度(费不费内存)

时间复杂度:最深层循环内语句执行次数。
注: 算法时间复杂度不仅依赖于问题的规模 n ,也取决于待输入数据的性质(输入数据元素初始状态)。
      这主要取决于循环跳出的条件是否和输入数据元素有关。

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值