最小公倍数的多种求法(C++代码实现)

前言

  (1)都是求最大公因数的方法,计算上辗转相除法以除法为主,更相减损术以减法为主,计算次数上辗转相除法计算次数相对较少,特别当两个数字大小区别较大时计算次数的区别较明显。
  (2)从结果体现形式来看,辗转相除法体现结果是以相除余数为0则得到,而更相减损术则以减数与差相等而得到。
  (3)欧几里德算法是计算两个数最大公约数的传统算法,无论从理论还是从实际效率上都是很好的。但是却有一个致命的缺陷,这个缺陷在素数比较小的时候一般是感觉不到的,只有在大素数时才会显现出来。这时候采用Stein算法来应对较大数字的问题。

一、质因数分解法

  质因数分解法:把每个数分别分解质因数,再把各数中的全部公有质因数提取出来连乘,所得的积就是这几个数的最大公约数。
例如:求24和60的最大公约数,先分解质因数,得24=2×2×2×3,60=2×2×3×5,24与60的全部公有的质因数是2、2、3,它们的积是2×2×3=12,所以,(24,60)=12。
把几个数先分别分解质因数,再把各数中的全部公有的质因数和独有的质因数提取出来连乘,所得的积就是这几个数的最小公倍数。

二、短除法

  短除法:短除法求最大公约数,先用这几个数的公约数连续去除,一直除到所有的商互质为止,然后把所有的除数连乘起来,所得的积就是这几个数的最大公约数。
  短除法求最小公倍数,先用这几个数的公约数去除每个数,再用部分数的公约数去除,并把不能整除的数移下来,一直除到所有的商中每两个数都是互质的为止,然后把所有的除数和商连乘起来,所得的积就是这几个数的最小公倍数.短除法的本质就是质因数分解法,只是将质因数分解用短除符号来进行。
  短除符号就是除号倒过来。短除就是在除法中写除数的地方写两个数共有的质因数,然后落下两个数被公有质因数整除的商,之后再除,以此类推,直到结果互质为止(两个数互质)。
而在用短除计算多个数时,对其中任意两个数存在的因数都要算出,其它没有这个因数的数则原样落下。直到剩下每两个都是互质关系。
  求最大公因数便乘一边,求最小公倍数便乘一圈。

三、辗转相除法

  辗转相除法:辗转相除法是求两个自然数的最大公约数的一种方法,也叫欧几里德算法。

  例如,求(319,377):
  ∵ 319÷377=0(余319)
  ∴(319,377)=(377,319);
  ∵ 377÷319=1(余58)
  ∴(377,319)=(319,58);
  ∵ 319÷58=5(余29)
  ∴ (319,58)=(58,29);
  ∵ 58÷29=2(余0)
  ∴ (58,29)= 29;
  ∴ (319,377)=29。

  用辗转相除法求几个数的最大公约数,可以先求出其中任意两个数的最大公约数,再求这个最大公约数与第三个数的最大公约数,依次求下去,直到最后一个数为止。最后所得的那个最大公约数,就是所有这些数的最大公约数。
在这里插入图片描述

四、更相减损法

  更相减损法:也叫更相减损术,是出自《九章算术》的一种求最大公约数的算法,它原本是为约分而设计的,但它适用于任何需要求最大公约数的场合。
  第一步:任意给定两个正整数;判断它们是否都是偶数。若是,则用2约简;若不是则执行第二步。
  第二步:以较大的数减较小的数,接着把所得的差与较小的数比较,并以大数减小数。继续这个操作,直到所得的减数和差相等为止。
  则第一步中约掉的若干个2与第二步中等数的乘积就是所求的最大公约数。
  其中所说的“等数”,就是最大公约数。求“等数”的办法是“更相减损”法。所以更相减损法也叫等值算法。

  例1.用更相减损术求98与63的最大公约数。
  解:由于63不是偶数,把98和63以大数减小数,并辗转相减:
  98-63=35
  63-35=28
  35-28=7
  28-7=21
  21-7=14
  14-7=7
  所以,98和63的最大公约数等于7。
  这个过程可以简单的写为:
  (98,63)=(35,63)=(35,28)=(7,28)=(7,21)=(7,14)=(7,7)=7.

  例2.用更相减损术求260和104的最大公约数。
  解:由于260和104均为偶数,首先用2约简得到130和52,再用2约简得到65和26。
  此时65是奇数而26不是奇数,故把65和26辗转相减:
  65-26=39
  39-26=13
  26-13=13
  所以,260与104的最大公约数等于13乘以第一步中约掉的两个2,即1322=52。
  这个过程可以简单地写为:
  (260,104)(/2/2) =>(65,26)=(39,26)=(13,26)=(13,13)=13. (22) => 52

五、Stein算法

  Stein算法:
  设置A1=A、B1=B和C1=1
  1、如果An=0,BnCn是最大公约数,算法结束
  2、如果Bn=0,An
Cn是最大公约数,算法结束
  3、 如果An和Bn都是偶数,则An+1=An/2,Bn+1=Bn/2,Cn+1=Cn*2(注意,乘2只要把整数左移一位即可,除2只要把整数右移一位即可)
  4、如果An是偶数,Bn不是偶数,则An+1=An/2,Bn+1=Bn,Cn+1=Cn (很显然啦,2不是奇数的约数)
  5、如果Bn是偶数,An不是偶数,则Bn+1=Bn/2,An+1=An,Cn+1=Cn (很显然啦,2不是奇数的约数)
  6、如果An和Bn都不是偶数,则An+1=|An-Bn|,Bn+1=min(An,Bn),Cn+1=Cn
  7、n加1,转步骤1
  考虑欧几里德算法,最恶劣的情况是,每次迭代a=2b-1,这样,迭代后,r=b-1。如果a小于2N,这样大约需要4N次迭代。而考虑Stein算法,每次迭代后,显然A(n+1)B(n+1)≤AnBn/2,最大迭代次数也不超过4N次。也就是说,迭代次数几乎是相等的。但是,需要注意的是,对于大素数,试商法将使每次迭代都更复杂,因此对于大素数Stein将更有优势。

int gcd(int a, int b) {
    // write code here
    int an = a, bn = b, cn = 1;
    
    while(1){
        if(an == 0) return cn * bn;
        if(bn == 0) return cn * an;
        if(an & 0x1 == 0 && bn & 0x1 == 0){
            an = an >> 1;
            bn = bn >> 1;
            cn = cn << 1;
        }
        else if(an & 0x1 == 0){
            an = an >> 1;
        }
        else if(bn & 0x1 == 0){
            bn = bn >> 1;
        }
        else{
            int mid = min(an, bn);
            an = abs(an - bn);
            bn = mid;
        }
    }
}
  • 3
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值