一、K 次取反后最大化的数组和
1.1 题目
给你一个整数数组 nums
和一个整数 k
,按以下方法修改该数组:
- 选择某个下标
i
并将nums[i]
替换为-nums[i]
。
重复这个过程恰好 k
次。可以多次选择同一个下标 i
。
以这种方式修改数组后,返回数组 可能的最大和 。
示例 1:
输入:nums = [4,2,3], k = 1 输出:5 解释:选择下标 1 ,nums 变为 [4,-2,3] 。
示例 2:
输入:nums = [3,-1,0,2], k = 3 输出:6 解释:选择下标 (1, 2, 2) ,nums 变为 [3,1,0,2] 。
示例 3:
输入:nums = [2,-3,-1,5,-4], k = 2 输出:13 解释:选择下标 (1, 4) ,nums 变为 [2,3,-1,5,4] 。
提示:
1 <= nums.length <= 10^4
-100 <= nums[i] <= 100
1 <= k <= 10^4
1.2 题目链接
1.3 解题思路和过程想法
(1)解题思路
整个思路中最重要的点就是绝对值最大和绝对值最小,用两次贪心
# 局部最优:让k个绝对值最大的负数变成正数--->整体最优:最大化数组和
# 局部最优:若k大于负数个数,且为奇数,则将绝对值最小的正数变成负数--->整体最优:最大化数组和
(2)过程想法
抓住主要思路就不难写相应的代码
1.4 代码
class Solution:
def largestSumAfterKNegations(self, nums: List[int], k: int) -> int:
# 局部最优:让k个绝对值最大的负数变成正数--->整体最优:最大化数组和
# 局部最优:若k大于负数个数,且为奇数,则将绝对值最小的正数变成负数--->整体最优:最大化数组和
# 先按绝对值降序排列
nums.sort(key = lambda x:abs(x),reverse = True)
# 让k个绝对值最大的负数变成正数
for i in range(len(nums)):
if nums[i] < 0 and k > 0:
nums[i] *= -1
k -= 1
# 若k大于负数个数,且为奇数,则将绝对值最小的正数变成负数
if k % 2 == 1:
nums[i] *= -1
res = sum(nums)
return res
二、加油站
2.1 题目
在一条环路上有 n
个加油站,其中第 i
个加油站有汽油 gas[i]
升。
你有一辆油箱容量无限的的汽车,从第 i
个加油站开往第 i+1
个加油站需要消耗汽油 cost[i]
升。你从其中的一个加油站出发,开始时油箱为空。
给定两个整数数组 gas
和 cost
,如果你可以按顺序绕环路行驶一周,则返回出发时加油站的编号,否则返回 -1
。如果存在解,则 保证 它是 唯一 的。
示例 1:
输入: gas = [1,2,3,4,5], cost = [3,4,5,1,2] 输出: 3 解释: 从 3 号加油站(索引为 3 处)出发,可获得 4 升汽油。此时油箱有 = 0 + 4 = 4 升汽油 开往 4 号加油站,此时油箱有 4 - 1 + 5 = 8 升汽油 开往 0 号加油站,此时油箱有 8 - 2 + 1 = 7 升汽油 开往 1 号加油站,此时油箱有 7 - 3 + 2 = 6 升汽油 开往 2 号加油站,此时油箱有 6 - 4 + 3 = 5 升汽油 开往 3 号加油站,你需要消耗 5 升汽油,正好足够你返回到 3 号加油站。 因此,3 可为起始索引。
示例 2:
输入: gas = [2,3,4], cost = [3,4,3] 输出: -1 解释: 你不能从 0 号或 1 号加油站出发,因为没有足够的汽油可以让你行驶到下一个加油站。 我们从 2 号加油站出发,可以获得 4 升汽油。 此时油箱有 = 0 + 4 = 4 升汽油 开往 0 号加油站,此时油箱有 4 - 3 + 2 = 3 升汽油 开往 1 号加油站,此时油箱有 3 - 3 + 3 = 3 升汽油 你无法返回 2 号加油站,因为返程需要消耗 4 升汽油,但是你的油箱只有 3 升汽油。 因此,无论怎样,你都不可能绕环路行驶一周。
提示:
gas.length == n
cost.length == n
1 <= n <= 10^5
0 <= gas[i], cost[i] <= 10^4
2.2 题目链接
2.3 解题思路和过程想法
(1)解题思路
用一次遍历判断现在的油是否能前往下一站,如果无法前往则将现在的油置为零,并将 start指针向后。若中途的油是足够的,并且 totalplus 也是足以绕一圈的,则start指针所指的就是起点。
(2)过程想法
最初想的是找到能够剩油最多的站点再做其他处理,但终究是不如上述简单。
2.4 代码
class Solution:
def canCompleteCircuit(self, gas: List[int], cost: List[int]) -> int:
# 局部最优:能够一直前往下一站的起始位置
curPlus = 0 # 当前剩余油
totalPlus = 0 # 总剩余油
start = 0 # 起始位置
for i in range(len(gas)):
curPlus += gas[i] - cost[i]
totalPlus += gas[i] - cost[i]
# 当前剩余油不足前往下一站,更新出发点
if curPlus < 0:
start = i+1
curPlus = 0
# 总剩余油小于0,则不足以环绕一圈
if totalPlus < 0:
return -1
return start
三、分发糖果
3.1 题目
n
个孩子站成一排。给你一个整数数组 ratings
表示每个孩子的评分。
你需要按照以下要求,给这些孩子分发糖果:
- 每个孩子至少分配到
1
个糖果。 - 相邻两个孩子评分更高的孩子会获得更多的糖果。
请你给每个孩子分发糖果,计算并返回需要准备的 最少糖果数目 。
示例 1:
输入:ratings = [1,0,2] 输出:5 解释:你可以分别给第一个、第二个、第三个孩子分发 2、1、2 颗糖果。
示例 2:
输入:ratings = [1,2,2] 输出:4 解释:你可以分别给第一个、第二个、第三个孩子分发 1、2、1 颗糖果。 第三个孩子只得到 1 颗糖果,这满足题面中的两个条件。
提示:
n == ratings.length
1 <= n <= 2 * 10^4
0 <= ratings[i] <= 2 * 10^4
3.2 题目链接
3.3 解题思路和过程想法
(1)解题思路
1)以最小值为中心,分别向左向右修改左右两侧的值:贪心——先找到评分最小值的下标,给每个人都先发一颗糖,再依次更新最小值左侧和右侧的分发情况。
往左遍历:如果左边的值大于右边,则增加左边的分发数;如果左边的值小于右边+左边的分发数等于右边的分发数,则增加右边的分发数(此处需用循环,因为一个改变之后,也可能影响附近的分发情况)
往右遍历:如果右边的值大于左边,则增加右边的分发数;如果右边的值小于左边+右边的分发数等于左边的分发数,则增加左边的分发数(此处需用循环,因为一个改变之后,也可能影响附近的分发情况)
2)用两次遍历,第一遍正序遍历,如果右边的值大于左边,则在左边分发数的基数上增加右边的分发数;第二遍逆序遍历,如果左边的值大于右边,且左边的分发数没有比右边的分发数大则增加左边的分发数,否则不做处理。
(2)过程想法
第一种思路是容易想到的,第二种思路没想到。
3.4 代码
3.4.1 以最小值为中心,分别向左向右修改左右两侧的值
class Solution:
def candy(self, ratings: List[int]) -> int:
minIndex = 0
distribute = [1] * len(ratings) # 至少每人发一颗
res = 0
# 找到评分最小值的下标
for i in range(len(ratings)):
if ratings[i] < ratings[minIndex]:
minIndex = i
# 更新最小值左侧的分发情况:往左遍历
for i in range(minIndex-1,-1,-1):
# 如果左边的值大于右边,则增加左边的分发数
if ratings[i] > ratings[i+1]:
distribute[i] = 1 + distribute[i+1]
elif ratings[i] < ratings[i+1]:
# 如果左边的值小于右边+左边的分发数等于右边的分发数,则增加右边的分发数
while ratings[i] < ratings[i+1] and distribute[i] == distribute[i+1]:
distribute[i+1] += 1
i += 1
# 更新最小值右侧的分发情况:往右遍历
for i in range(minIndex+1,len(ratings)):
# 如果右边的值大于左边,则增加右边的分发数
if ratings[i-1] < ratings[i]:
distribute[i] = 1 + distribute[i-1]
elif ratings[i-1] > ratings[i]:
# 如果右边的值小于左边+右边的分发数等于左边的分发数,则增加左边的分发数
while ratings[i-1] > ratings[i] and distribute[i-1] == distribute[i]:
distribute[i-1] += 1
i -= 1
return sum(distribute)
3.4.2 两次遍历
class Solution:
def candy(self, ratings: List[int]) -> int:
distribute = [1] * len(ratings) # 至少每人发一颗
res = 0
# 第一遍:往右遍历
for i in range(1,len(ratings)):
# 如果右边的值大于左边,则增加右边的分发数
if ratings[i-1] < ratings[i]:
distribute[i] = distribute[i-1] + 1
# 第二遍:往左遍历
for i in range(len(ratings)-2,-1,-1):
# 如果左边的值大于左边,判断是否已满足要求,否则增加左边的分发数
if ratings[i] > ratings[i+1]:
distribute[i] = max(distribute[i],distribute[i+1]+1)
return sum(distribute)