学习笔记:机器学习--1.4正规方程求解\(\theta\)值

这篇博客介绍了机器学习中正规方程(Normal Equation)求解θ值的方法,涉及公式( heta = (X^T X)^{-1} X^T y )。正规方程无需学习速率α,可直接一步求得最优解,但当特征数量n很大时,计算复杂度高,可能不如梯度下降法高效。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这是机器学习的第一章第四节:通过Normal equation(正规方程)求解\(\theta\)

在学习本节过程中,仍将提及到高等数学中矩阵的相关内容

通过这一节的学习将会了解另一种计算\(\theta\)值的方法,即Normal equation。该方法涉及到以下一个公式:

公式1.4.1:\(\theta = (X^T X)^{-1} X^T y\)

在上一节中,我们学习了Gradient descent方法循环求解\(\theta\)值,通过每一次循环逐渐逼近\(\theta\)值的最优解,从而在有限次循环后得到最终的

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值