两种利用迭代思想求平方根的思路

求平方根的迭代思想,两种方式。


\quad 前两天3.14国际数学节时看了一个数学讲座,讲的是 π \pi π的历史,其中有一个塞翁迭代,从来没听说个的迭代方法,看完之后,觉得老师说的好不通透,有点佶屈聱牙。迭代是个很简单的思想,也是个很重要的思想,特别是计算机时代,比如牛顿-拉夫逊迭代就是在各行各业,特别是工程中经常要用的的一种近似计算方法,其核心思想就是泰勒公式的近似。迭代的思想简单说来就是方程左右相等,然后推出来一个变形的等式,进而层层递进。

第一种方法

y = x 2 , 求 x y=x^2,求x y=x2x
利用变换
y + x 2 = 2 x 2 y+x^2=2x^2 y+x2=2x2
⇒ x = 1 2 ( x + y x ) \Rightarrow \quad x=\frac12(x+\dfrac yx) x=21(x+xy)

X n = 1 2 ( X n − 1 + y X n − 1 ) X_n =\frac12(X_{n-1} + \frac{y}{X_{n-1}}) Xn=21(Xn1+Xn1y)
e g : 2 = x 2 eg: \quad 2=x^2 eg:2=x2
代入即得
X n = 1 2 ( X n − 1 + 2 X n − 1 ) X_n=\frac{1}{2}(X_{n-1} + \frac{2}{X_{n-1}}) Xn=21(Xn1+Xn12)
X n X_n Xn 初值可以从1开始。
则:
X 2 = 1 2 ( X 1 + 2 X 1 ) = 1 2 ( 1 + 2 ) = 3 2 X_2=\frac{1}{2}(X_1 + \frac{2}{X_1})=\frac{1}{2}(1+2)=\frac{3}{2} X2=21(X1+X12)=21(1+2)=23
X 3 = 1 2 ( X 2 + 2 X 2 ) = 1 2 ( 3 2 + 4 3 ) = 17 12 X_3=\frac{1}{2}(X_2+\frac{2}{X_2})=\frac{1}{2}(\frac{3}{2}+\frac{4}{3})=\frac{17}{12} X3=21(X2+X22)=21(23+34)=1217
X 4 = 1 2 ( X 3 + 2 3 ) = 1 2 ( 17 12 + 24 17 ) = 577 408 ≈ 1.414 X_4=\frac{1}{2}(X_3+\frac{ 2}{3})=\frac{1}{2}(\frac{17}{12}+\frac{24}{17})=\frac{577}{408} \approx 1.414 X4=21(X3+32)=21(1217+1724)=4085771.414

第二种方法

y = x , 求 y y=\sqrt{x},求y y=x ,y
利用变换
y 2 = x y^2=x y2=x
得到
y 2 + y = x + y y^2+y=x+y y2+y=x+y
⇒ y = y + x y + 1 \Rightarrow \quad y=\frac{y+x}{y+1} y=y+1y+x

y n = y n − 1 + x y n − 1 + 1 y_n=\frac{y_{n-1}+x}{y_{n-1}+1} yn=yn1+1yn1+x
eg: y = 2 , 即 x = 2. \quad y=\sqrt{2},即x=2. y=2 ,x=2.
代入即得
y n = y n − 1 + 2 y n − 1 + 1 y_n=\frac{y_{n-1}+2}{y_{n-1}+1} yn=yn1+1yn1+2
y n y_n yn初值可以从0开始。
则:
y 1 = 2 y_1=2 y1=2
y 2 = y 1 + 2 y 1 + 1 = 4 3 y_2=\frac{y_1+2}{y_1+1}=\frac{4}{3} y2=y1+1y1+2=34
y 3 = y 2 + 2 y 2 + 1 = 10 7 ≈ 1.42 y_3=\frac{y_2+2}{y_2+1}=\frac{10}{7} \approx 1.42 y3=y2+1y2+2=7101.42
\quad 至此两种方法都介绍完了,但是如果想用比值逼近得方法只需要第二种方法中令 y = a b y=\dfrac ab y=ba即可,或记为y=(a,b)。
也即:
a b = a b + x a b + 1 \frac{a}{b}=\frac{\frac{a}{b}+x}{\frac{a}{b}+1} ba=ba+1ba+x
⇒ a b = a + b x a + b \Rightarrow \quad \frac{a}{b}=\frac{a+bx}{a+b} ba=a+ba+bx
⇒ a n = a n − 1 + b n − 1 x b n = a n − 1 + b n − 1 \Rightarrow \quad a_n=a_{n-1}+b_{n-1}x \\ \quad b_n=a_{n-1}+b_{n-1} an=an1+bn1xbn=an1+bn1
这就是塞翁迭代,theon’s ladder。

参考资料:

  1. Sir Thomas Heath, A History of Greek Mathematics, Vol. 1, Clarendon Press, pp. 91–93.
  2. J. R. Newman, The World of Mathematics, Vol. 1, Simon and Schuster, 1956, pp. 97–98.

后记:

\quad 这里学会了分数其他表示方法。分数用命令\frac,它会自动根据环境调整字号,在行间公式中小一点,在独立公式中大一点,也可人工设置分数字号如:

\dfrac命令把分数的字号设置为独立公式大小;\tfrac命令把分数字号设置为行间公式大小。

例如:​​ a b a b \frac ab \quad \dfrac ab baba

[\frac ab \quad \tfrac ab]

\quad 这是我第一次用MD写,发现公式写起来比word方便多了,以后写公式就用它了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值