求平方根的迭代思想,两种方式。
\quad 前两天3.14国际数学节时看了一个数学讲座,讲的是 π \pi π的历史,其中有一个塞翁迭代,从来没听说个的迭代方法,看完之后,觉得老师说的好不通透,有点佶屈聱牙。迭代是个很简单的思想,也是个很重要的思想,特别是计算机时代,比如牛顿-拉夫逊迭代就是在各行各业,特别是工程中经常要用的的一种近似计算方法,其核心思想就是泰勒公式的近似。迭代的思想简单说来就是方程左右相等,然后推出来一个变形的等式,进而层层递进。
第一种方法
y
=
x
2
,
求
x
y=x^2,求x
y=x2,求x
利用变换
y
+
x
2
=
2
x
2
y+x^2=2x^2
y+x2=2x2
⇒
x
=
1
2
(
x
+
y
x
)
\Rightarrow \quad x=\frac12(x+\dfrac yx)
⇒x=21(x+xy)
即
X
n
=
1
2
(
X
n
−
1
+
y
X
n
−
1
)
X_n =\frac12(X_{n-1} + \frac{y}{X_{n-1}})
Xn=21(Xn−1+Xn−1y)
e
g
:
2
=
x
2
eg: \quad 2=x^2
eg:2=x2
代入即得
X
n
=
1
2
(
X
n
−
1
+
2
X
n
−
1
)
X_n=\frac{1}{2}(X_{n-1} + \frac{2}{X_{n-1}})
Xn=21(Xn−1+Xn−12)
X
n
X_n
Xn 初值可以从1开始。
则:
X
2
=
1
2
(
X
1
+
2
X
1
)
=
1
2
(
1
+
2
)
=
3
2
X_2=\frac{1}{2}(X_1 + \frac{2}{X_1})=\frac{1}{2}(1+2)=\frac{3}{2}
X2=21(X1+X12)=21(1+2)=23
X
3
=
1
2
(
X
2
+
2
X
2
)
=
1
2
(
3
2
+
4
3
)
=
17
12
X_3=\frac{1}{2}(X_2+\frac{2}{X_2})=\frac{1}{2}(\frac{3}{2}+\frac{4}{3})=\frac{17}{12}
X3=21(X2+X22)=21(23+34)=1217
X
4
=
1
2
(
X
3
+
2
3
)
=
1
2
(
17
12
+
24
17
)
=
577
408
≈
1.414
X_4=\frac{1}{2}(X_3+\frac{ 2}{3})=\frac{1}{2}(\frac{17}{12}+\frac{24}{17})=\frac{577}{408} \approx 1.414
X4=21(X3+32)=21(1217+1724)=408577≈1.414
第二种方法
y
=
x
,
求
y
y=\sqrt{x},求y
y=x,求y
利用变换
y
2
=
x
y^2=x
y2=x
得到
y
2
+
y
=
x
+
y
y^2+y=x+y
y2+y=x+y
⇒
y
=
y
+
x
y
+
1
\Rightarrow \quad y=\frac{y+x}{y+1}
⇒y=y+1y+x
即
y
n
=
y
n
−
1
+
x
y
n
−
1
+
1
y_n=\frac{y_{n-1}+x}{y_{n-1}+1}
yn=yn−1+1yn−1+x
eg:
y
=
2
,
即
x
=
2.
\quad y=\sqrt{2},即x=2.
y=2,即x=2.
代入即得
y
n
=
y
n
−
1
+
2
y
n
−
1
+
1
y_n=\frac{y_{n-1}+2}{y_{n-1}+1}
yn=yn−1+1yn−1+2
y
n
y_n
yn初值可以从0开始。
则:
y
1
=
2
y_1=2
y1=2
y
2
=
y
1
+
2
y
1
+
1
=
4
3
y_2=\frac{y_1+2}{y_1+1}=\frac{4}{3}
y2=y1+1y1+2=34
y
3
=
y
2
+
2
y
2
+
1
=
10
7
≈
1.42
y_3=\frac{y_2+2}{y_2+1}=\frac{10}{7} \approx 1.42
y3=y2+1y2+2=710≈1.42
\quad
至此两种方法都介绍完了,但是如果想用比值逼近得方法只需要第二种方法中令
y
=
a
b
y=\dfrac ab
y=ba即可,或记为y=(a,b)。
也即:
a
b
=
a
b
+
x
a
b
+
1
\frac{a}{b}=\frac{\frac{a}{b}+x}{\frac{a}{b}+1}
ba=ba+1ba+x
⇒
a
b
=
a
+
b
x
a
+
b
\Rightarrow \quad \frac{a}{b}=\frac{a+bx}{a+b}
⇒ba=a+ba+bx
⇒
a
n
=
a
n
−
1
+
b
n
−
1
x
b
n
=
a
n
−
1
+
b
n
−
1
\Rightarrow \quad a_n=a_{n-1}+b_{n-1}x \\ \quad b_n=a_{n-1}+b_{n-1}
⇒an=an−1+bn−1xbn=an−1+bn−1
这就是塞翁迭代,theon’s ladder。
参考资料:
- Sir Thomas Heath, A History of Greek Mathematics, Vol. 1, Clarendon Press, pp. 91–93.
- J. R. Newman, The World of Mathematics, Vol. 1, Simon and Schuster, 1956, pp. 97–98.
后记:
\quad 这里学会了分数其他表示方法。分数用命令\frac,它会自动根据环境调整字号,在行间公式中小一点,在独立公式中大一点,也可人工设置分数字号如:
\dfrac命令把分数的字号设置为独立公式大小;\tfrac命令把分数字号设置为行间公式大小。
例如: a b a b \frac ab \quad \dfrac ab baba
[\frac ab \quad \tfrac ab]
\quad 这是我第一次用MD写,发现公式写起来比word方便多了,以后写公式就用它了。