通俗易懂理解JAVA虚拟机(二)——JVM整体结构深度解析,JVM内存参数设置实战
已有足够多的优秀的介绍JVM内存模型的文章,在这里不再过多赘述直接上图。本文主要详解大型电商互联网公司如何设置JVM的内存参数。
一 . JVM整体结构及内存模型
二、JVM内存参数设置
Spring Boot程序的JVM参数设置格式(Tomcat启动直接加在bin目录下catalina.sh文件里):
1java ‐Xms2048M ‐Xmx2048M ‐Xmn1024M ‐Xss512K ‐XX:MetaspaceSize=256M ‐XX:MaxMetaspaceSize=256M ‐jar microservice‐eureka‐server.jar
StackOverflowError示例:
结论:-Xss设置越小count值越小,说明一个线程栈里能分配的栈帧就越少,但是对JVM整体来说能开启的线程数会更多
JVM内存参数大小该如何设置?
JVM参数大小设置并没有固定标准,需要根据实际项目情况分析,给大家举个例子
日均百万级订单交易系统如何设置JVM参数
一天百万级订单这个绝对是现在顶尖电商公司交易量级,对于这种量级的系统我们该如何设置JVM参数了?
我们可以试着估算下,其实日均百万订单主要也就是集中在当日的几个小时生成的,我们假设是三小时,也就是每秒大概生成100单左右。
这种系统我们一般至少要三四台机器去支撑,假设我们部署了四台机器,也就是每台每秒钟大概处理完成25单左右,往上毛估每秒处理30单吧。
也就是每秒大概有30个订单对象在堆空间的新生代内生成,一个订单对象的大小跟里面的字段多少及类型有关,比如int类型的订单id和用户id等字段,double类型的订单金额等,int类型占用4字节,double类型占用8字节,初略估计下一个订单对象大概1KB左右,也就是说每秒会有30KB的订单对象分配在新生代内。
真实的订单交易系统肯定还有大量的其他业务对象,比如购物车、优惠券、积分、用户信息、物流信息等等,实际每秒分配在新生代内的对象大小应该要再扩大几十倍,我们假设30倍,也就是每秒订单系统会往新生代内分配近1M的对象数据,这些数据一般在订单提交完的操作做完之后基本都会成为垃圾对象。
我们一般线上服务器的配置用得较多的就是双核4G或4核8G,如果我们用双核4G的机器,因为服务器操作系统包括一些后台服务本身可能就要占用1G多内存,也就是说给JVM进程最多分配2G多点内存,刨开给方法区和虚拟机栈分配的内存,那么堆内存可能也就能分配到1G多点,对应的新生代内存最后可能就几百M,那么意味着没过几百秒新生代就会被垃圾对象撑满而出发minor gc,这么频繁的gc对系统的性能还是有一定影响的。
如果我们选择4核8G的服务器,就可以给JVM进程分配四五个G的内存空间,那么堆内存可以分到三四个G左右,于是可以给新生代至少分配2G,这样算下差不多需要半小时到一小时才能把新生代放满触发minor gc,这就大大降低了minor gc的频率,所以一般我们线上服务器用得较多的还是4核8G的服务器配置。
如果系统业务量继续增长那么可以水平扩容增加更多的机器,比如五台甚至十台机器,这样每台机器的JVM处理请求可以保证在合适范围,不至于压力过大导致大量的gc。
有人可能有疑问说双核4G的服务器好像也够用啊,无非就是minor gc频率稍微高一点呀,不是说minor gc对系统的影响不是特别大吗,我成本有限,只能用这样的服务器啊。
其实如果系统业务量比较平稳也能凑合用,如果经常业务量可能有个几倍甚至几十倍的增长,比如时不时的搞个促销秒杀活动什么的,那我们思考下会不会有什么问题。
假设业务量暴增几十倍,在不增加机器的前提下,整个系统每秒要生成几千个订单,之前每秒往新生代里分配的1M对象数据可能增长到几十M,而且因为系统压力骤增,一个订单的生成不一定能在1秒内完成,可能要几秒甚至几十秒,那么就有很多对象会在新生代里存活几十秒之后才会变为垃圾对象,如果新生代只分配了几百M,意味着一二十秒就会触发一次minor gc,那么很有可能部分对象就会被挪到老年代,这些对象到了老年代后因为对应的业务操作执行完毕,马上又变为了垃圾对象,随着系统不断运行,被挪到老年代的对象会越来越多,最终可能又会导致full gc,full gc对系统的性能影响还是比较大的。
如果我们用的是4核8G的服务器,新生代分配到2G以上的水平,那么至少也要几百秒才会放满新生代触发minor gc,那些在新生代即便存活几十秒的对象在minor gc触发的时候大部分已经变为垃圾对象了,都可以被及时回收,基本不会被挪到老年代,这样可以大大减少老年代的full gc次数。