天线阵列分析与综合

本文探讨了天线阵列分析与综合,重点关注分布形式、相位、激励幅度和单元间距的影响。稀疏布阵用于降低成本和互耦问题,相位误差和位置误差对波束性能产生影响。同时,讨论了基于无人机群的相控阵雷达技术,强调位置误差的处理及其对天线性能的挑战。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

天线阵列分析与综合

天线阵综合的目的是通过确定阵元的激励幅度、相位、阵元位置等参数,使天线阵的方向图满足一定的要求,如控制旁瓣电平,在某处形成一定深度的零点,使主瓣满足特定形状要求等。

各影响参数对应的不同研究方向

天线阵列的辐射特性取决于阵列阵元数目、分布形式、单元间距、激励幅度和相位,控制这几个因素就可以改变辐射场的特征。其对应的各自解决方式也不相同:

  • 分布形式—— ——均匀阵存在两个难以克服的缺陷:第一,当均匀阵阵元间距不大于λ/2(λ为入射波长)时,在可视区内只存在一个主瓣而没有栅瓣,不影响阵列天线的正常工作。但如果入射波长较小时,阵元间距就会相应的很小,那么阵元间就会出现互耦效应,对天线阵列的特性造成严重的影响。第二,阵列天线方向图的主瓣宽度通常与其孔径成反比,为了实现较窄的主瓣,就需要增加天线单元,阵列天线的造价成本随之升高。因此采用稀疏布阵的方式解决阵列天线成本过高以及阵元因间距太小而产生的互耦问题。后续还可进一步采用如遗传算法、模拟退火算法等智能算法对其方向图进行优化。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-xUxRaMCj-1573868651462)(http://m.qpic.cn/psb?/V130uv1u1uSvCZ/chRwbcQFbfecFSkcnQ*K1AwTBRSZjZvJJFj9hxighxc!/b/dLgAAAAAAAAA&bo=*wFwAf8BcAEDGTw!&rf=viewer_4&t=5)]

  • 相位—— ——相控阵雷达正常工作通常采用移相的方式来实现,由于移相器等的性能差异,会使得天线激励出现相位误差,对天线波束的性能造成不良的影响,比如使副瓣电平比理论设计值有所抬高,实际的波束指向偏离预期指向等等。此时可以将其看成一个随机变量,满足一定的概率分布,具体分析相位误差对于波束指向的影响。

  • 激励幅度—— ——在激励均匀分布的基础上,为满足更高的要求,比如获得更低的副瓣电平,更好的方向性系数,可以对阵元的激励幅度采用不同的加权方式,如切比雪夫综合法,泰勒综合法等。不同的加权方式各有优缺,切比雪夫阵列综合法综合出的方向图,在给定主瓣宽度的情况下能获得最低的旁瓣电平,而且是等旁瓣的;在给定旁瓣电平的情况下能获得最窄的主瓣宽度。泰勒综合法得到的方向图,前几个旁瓣的电平基本相等,后面的则逐渐递减。
    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-8hfxyuSa-1573868651466)(http://m.qpic.cn/psb?/V130uv1u1uSvCZ/HV4U97sW7aVXbzgFIvx9ZZoLLIpMOlZ*3vpHPO2pmA4!/b/dFIBAAAAAAAA&bo=bAPwAmwD8AIDKQw!&rf=viewer_4&t=5)]

  • 单元间距—— ——在设计天线时,需首先确保阵元间距大于λ/2,否则会产生栅瓣,消耗主瓣功率。其次由于安装精度的问题,可能存在着位置误差,与相位误差相同,也可将阵元的位置误差看成是一个随机变量,甚至可以将位置误差等效成相位误差进行处理。
     
    同时我们需要注意到,这几种解决方式并非相互独立的,存在着相互影响的情况,如采用稀疏布阵的方式时,会减少阵元的数目,同时旁瓣电平会随着阵元数的减少而升高,为了降低阵列的旁瓣电平,就需要优化阵列天线的阵元位置和激励,相应的均匀分布激励就不再合适,就需要采取如泰勒综合法等。综上,天线方向图需要综合分析。

存 在 疑 问 : \color{red}{存在疑问:} 是否可以对位置误差进行等效成相位误差?

基于无人机群的相控阵雷达技术结合点

因此,根据上述因素对阵列天线方向图的影响,与无人机紧密结合的有两种方式:

  1. 因为多无人机机群的控制和任务规划是一个难点,而要想代替传统相控阵雷达,必然存在机群规模庞大的问题,同时存在着电磁干扰因素,这加大了无人机群的控制难度。因此稀疏布阵可以很好地解决这一问题。
  2. 无人机群的定位误差暂时无法赶上传统的加工精度,会对天线性能有一定的影响,这也是不可忽视的一个问题,因此,需要对阵元的位置误差加以分析。

位置误差对阵列天线的影响

就位置误差而言,一般是假设单元位置误差的概率密度服从某种分布,并且假设单元位置误差是独立的,然后给出单元位置误差方差与副瓣电平的关系。假设二维面阵中共有 M ⋅ N M\cdotp N MN个阵元,沿 x x x方向上为 1 ∼ M 1\sim M 1M,沿 y y y方向上为 1 ∼ N 1\sim N 1N

理想情况下单元间距为 (   d x   ,   d y   ,   d z ) ( \ d_{x} \ ,\ d_{y} \ ,\ d_{z}) ( dx , dy , dz),定义相对误差如下:
x m δ

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值