1. 2个玻璃球,100 层楼,测试第几层玻璃球破碎
1.最基础 2分法:
- A 分别 50L 和 100L
- B 需要丢1到49L(如果A 在50L 破裂) 或者 51L 到99L(A在50没破,但是100破)
- 所以最多: 2 + 49 = 51 次;
2. 优化 A每隔10L 丢一次,B 每次最多9次
- 最多10 + 9 = 19 次
3. 最优解法
- 假设 A 第一次隔10L,第2次相较于第一次隔9L ... ...
- A第一次破:B 需要10 -1 = 9 次,总共 9 + 1 = 10 次·;
- A第一次没破,第二次破 : B 需要9 -1 = 8次,总共 8 + 2 = 10次;
按照如上每次A球的间隔比上次少一,可以保证每次尝试的总次数都是固定
假设第一次A球第一次N,则:
N + (N-1) + (N-2) + ... + 1 至少>=100 才能完成所有的遍历
(N+1)*N/2 = 100
N至少为14
所有最优解是14次