// [解题方法]
// 记忆化搜索(递归,子问题的结果用备忘录存起来,避免重复求解)
// 设棍子长度n,输入的c[i]是棍子上的坐标
// dp[x][y](即dfs(x,y))表示砍c[x]到c[y]段的最小花费
// 每次砍c[x]~c[y]段的时候枚举砍的位置i
// 状态转移:dp[x][y] = min(dp[x][i] + dp[i][y] + c[y]-c[x])(x<=i<=y)
// 注:-1表示无穷大
#include <iostream>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <algorithm>
using namespace std;
#define LL long long
#define M 55
#define inf 0x3fffffff
int dp[M][M], c[M];
int dfs (int x, int y)
{
if (dp[x][y] > -1)
return dp[x][y];
int tp = -1, i;
for (i = x+1; i < y; i++)
{
int tmp = dfs(x, i) + dfs(i, y) + c[y] - c[x];
if (tp < 0 || tmp < tp) tp = tmp;
}
return (dp[x][y] = tp);
}
int main()
{
int n, m, i;
while (cin >> n, n)
{
cin >> m;
c[0] = 0;
for (i = 1; i <= m; i++) {
cin >> c[i];
}
c[m+1] = n;
memset (dp, -1, sizeof(dp));
for (i = 0; i <= m; i++)
dp[i][i+1] = 0;
cout << "The minimum cutting is " << dfs(0, m+1) << "." << endl;
}
return 0;
}
UVA 10003 Cutting Sticks
最新推荐文章于 2024-11-10 21:43:58 发布