/*
* [题意]
* 对于只由数字1和0构成的串
* 给出长度为n的, 不含子串101且不含子串111的串的个数(mod m)
* [解题方法]
* 设f[n]为长度是n的并且以0结尾的串的个数
* 设g[n]为长度是n的并且以1结尾的串的个数
* 则有: 1. f[n] = f[n-1](...00) + g[n-1](...10)
* 2. g[n] = f[n-2](...001) + f[n-3](...0011)
* 所以有矩阵:
* |1 0 0 1| |f[n-1]| |f[n] |
* |1 0 0 0| * |f[n-2]| = |f[n-1]|
* |0 1 0 0| |f[n-3]| |f[n-2]|
* |0 1 1 0| |g[n-1]| |g[n] |
*/
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <algorithm>
#include <math.h>
#include <vector>
using namespace std;
#define M 4
#define LL long long
#define FF(i, n) for(int i = 0; i < n; i++)
int ans[M], mod;
int init[M][M];
int ret[M][M];
int ss[M][M] = {1, 0, 0, 1,
1, 0, 0, 0,
0, 1, 0, 0,
0, 1, 1, 0};
void ini(int n)
{
ans[0] = ans[3] = 2;
ans[1] = ans[2] = 1;
FF(i, n) FF(j, n) init[i][j] = ss[i][j];
}
void matmul(int a[][M], int b[][M], int n)
{
int tp[M][M] = {0};
FF(i , n) FF(k, n) if(a[i][k]) FF(j, n) if(b[k][j])
tp[i][j] = (tp[i][j] + (LL)a[i][k]*b[k][j]) % mod;
FF(i, n) FF(j, n) a[i][j] = tp[i][j];
}
void matmul(int a[], int b[][M], int n)
{
int tp[M] = {0};
FF(j, n) if(a[j]) FF(i, n) if(b[i][j])
tp[i] = (tp[i] + (LL)a[j]*b[i][j]) % mod;
FF(i, n) a[i] = tp[i];
}
void qmod(int n, int b)
{
FF(i, n) FF(j, n) ret[i][j] = (i==j);
for ( ; b; b >>= 1)
{
if (b & 1) matmul(ret, init, n);
matmul(init, init, n);
}
}
int main()
{
int n;
while (cin >> n >> mod)
{
ini(M); //初始ans矩阵为:[f2 f1 f0 g2] = [2 1 1 2]
qmod(M, n);
matmul(ans, ret, M);
cout << ans[1] << endl; //答案 = f[n] + g[n] = f[n+1]
}
return 0;
}