2016.5.24

1.怪盗基德的滑翔翼

http://cxsjsx.openjudge.cn/2015finalpractice/23/

哈哈,有趣的题目,我是柯南粉哦 ~

嗯..一开始没仔细读题,WA一次以后才明白其实就是求最长上升子序列和下降子序列

昨天刚学完的动规思路,今天刚好巩固一下

注意memset(h, 1, sizeof(h)) 并不能把所有值初始化为1

核心代码:

for (int i = 2; i <= N; ++i)//每次求第i个数为终点的最长子序列
        {
            for (int j = 1; j < i; ++j)//遍历所有在i前面的终点,得到最长解
            {
                if (build[i] > build[j])
                    up[i] = max(up[i], up[j] + 1);
            }
        }
        cmax = *max_element(up + 1, up + N + 1);
        for (int i = N - 1; i >= 0; --i)//倒序
        {
            for (int j = N; j > i; --j)
                if (build[i] > build[j])
                    down[i] = max(down[i], down[j] + 1);
        }


2.宠物小精灵之征服

http://cxsjsx.openjudge.cn/2015finalpractice/22/

乍一看以为是01背包问题(可能就是..只是目前还没学太懂)结果发现似乎状态不太一样,在一次尝试后觉得应该将收服的精灵数作为状态量

承认最终看了网上同学的代码= =...做题量太少不熟练啊....

#include <iostream>
#include <algorithm>

using namespace std;

int main()
{
    int dp[1010][500] = { 0 };
    int w[100], v[100];
    int N, M, K;
    cin >> N >> M >> K;
    for (int i = 1; i <= K; ++i)
    {
        cin >> w[i] >> v[i];
    }
    for (int i = 1; i <= K; ++i)
        for (int j = N; j >= w[i]; --j)
            for (int k = M; k >= v[i]; --k)
                //dp[i][j]表示最多使用i个精灵球,皮卡丘最多损失j体力的情况下,收服的最多精灵数
                dp[j][k] = max(dp[j][k], dp[j - w[i]][k - v[i]] + 1);
    for (int k = 0; k <= M; ++k)
        if (dp[N][k] == dp[N][M])
        {
            cout << dp[N][k] << " " << M - k << endl;
            break;
        }
    return 0;
}


3.大盗阿福

http://noi.openjudge.cn/ch0206/8462/


额...本应该挺简单的一道题,让我给想成最长上升子序列的求法了结果总超时...回去需要看看算法复杂度的计算方法


超时代码:

while (T--)
    {
        scanf("%d", &N);
        for (int i = 0; i < N; ++i)
        {
            scanf("%d", &a[i]);
            dp[i] = a[i];
        }
        int cmax = 0;
        for (int i = 2; i < N; ++i)
            for (int j = 0; j < i - 1; ++j)
            {
                dp[i] = max(dp[i], dp[j] + a[i]);
                if (cmax < dp[i])
                    cmax = dp[i];
            }
        printf("%d\n", cmax);
    }

正解:

while (T--)
    {
        scanf("%d", &N);
        for (int i = 1; i <= N; ++i)
        {
            scanf("%d", &a[i]);
            dp[i] = a[i];
        }
        for (int i = 2; i <= N; ++i)
            dp[i] = max(dp[i - 1], dp[i - 2] + a[i]);
        printf("%d\n", dp[N]);
    }



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值