Coursera Machine Learning 第二周总结

第二周课程主要介绍了 梯度下降算法,和基于其的线性回归算法。

1.梯度下降算法:

首先涉及到cost function的概念:


梯度下降的目的就是让cost function收敛到一个最小值以达到最佳拟合的目的。

具体的表达形式如下:


而在实际的应用中,由于输入的多个特征值之间大小差距很大,这会导致梯度下降的过程加快从而无法很好的进行收敛。

所以要对数据进行预处理,即 Feature Scaling,这个很好理解,就是数据的标准化过程。


当然,对于学习速率(learning rate)α也有一定要求,需要通过调整来找到最佳的数值。


2.正规方程法

类似于二次方程的求根公式,可以直接求出所要求的参数:


对于现在计算机来说,适合数据量小于10,000的情况。


3.Matlab入门

讲了很多Matlab的基本语法,编程练习就是通过matlab实现一个线性回归的模型。具体代码可以在我的github上查看。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值