2016.5.27(2)

1.最长公共子序列

这部分内容之前已经有过心得体会,但在今天看到求最长公共上升子序列时还是一脸茫然....

之前公共子序列的状态转移方程并不普适,具体原因也不太好说,但是总有种奇技淫巧的感觉

于是乎 ~ 状态需要改变:f[i][j]表示以a串的前i个整数与b串的前j个整数且以b[j]为结尾构成的LCIS的长度。

定义状态

F[i][j]表示以a串的前i个整数与b串的前j个整数且以b[j]为结尾构成的LCIS的长度。

状态转移方程:

①F[i][j] = F[i-1][j] (a[i] != b[j])

②F[i][j] = max(F[i-1][k]+1) (1 <= k <= j-1 && b[j] > b[k])

现在我们来说为什么会是这样的状态转移方程呢?

对于①,因为F[i][j]是以b[j]为结尾的LCIS,如果F[i][j]>0那么就说明a[1]..a[i]中必然有一个整数a[k]等于b[j],因为a[k]!=a[i],那么a[i]对F[i][j]没有贡献,于是我们不考虑它照样能得出F[i][j]的最优值。所以在a[i]!=b[j]的情况下必然有F[i][j]=F[i-1][j]。

对于②,前提是a[i] == b[j],我们需要去找一个最长的且能让b[j]接在其末尾的LCIS。之前最长的LCIS在哪呢?首先我们要去找的F数组的第一维必然是i-1。因为i已经拿去和b[j]配对去了,不能用了。并且也不能是i-2,因为i-1必然比i-2更优。第二维呢?那就需要枚举b[1]...b[j-1]了,因为你不知道这里面哪个最长且哪个小于b[j]。这里还有一个问题,可不可能不配对呢?也就是在a[i]==b[j]的情况下,需不需要考虑F[i][j]=F[i-1][j]的决策呢?答案是不需要。因为如果b[j]不和a[i]配对,那就是和之前的a[1]...a[j-1]配对(假设F[i-1][j]>0,等于0不考虑),这样必然没有和a[i]配对优越。(为什么必然呢?因为b[j]和a[i]配对之后的转移是max(F[i-1][k])+1,而和之前的i`配对则是max(F[i`-1][k])+1。

朴素的LCIS算法实现

void dp()  
{  
    init();  
    int i, j, k;  
    for(i = 1; i <= n; i++)  
    {  
        for(j = 1; j <= m; j++)  
        {  
            f[i][j] = f[i-1][j]; // if(a[i] != b[j])  
            if(a[i] == b[j])  
            {  
                int MAX = 0;  
                for(k = 1; k <= j-1; k++) if(b[j] > b[k]) //枚举最大的f[i-1][k]   
                {  
                    MAX = max(MAX, f[i-1][k]);  
                }  
                f[i][j] = MAX+1;  
            }  
        }  
    }  
    int ans = 0;  
    for(int i = 1; i <= m; i++) ans = max(ans, f[n][i]);  
    printf("%d\n", ans);  
}  

以上的代码的时间复杂度是O(n^3),那我们怎么去优化呢?通过思考发现,第三层循环找最大值是否可以优化呢?我们能否直接把枚举最大的f[i-1][k]值直接算出来呢?假设存在这么一个序列a[i] == b[j],我们继续看状态转移方程②,会发现b[j] > b[k],即当a[i] == b[j]时,可以推出a[i] > b[k],那么有了这个表达式我们可以做什么呢?可以发现,我们可以维护一个MAX值来储存最大的f[i-1][k]值。即只要有a[i] > a[j]的地方,那么我们就可以更新最大值,所以,当a[i] == b[j]的时候,f[i][j] = MAX+1,即可。

核心代码:

void dp()  
{  
    for(int i = 1; i <= n; i++)  
    {  
        int MAX = 0; //维护最大值   
        for(int j = 1; j <= m; j++)  
        {  
            f[i][j] = f[i-1][j]; //a[i] != b[j]  
            if(a[i] > b[j]) MAX = max(MAX, f[i-1][j]);  
            if(a[i] == b[j]) f[i][j] = MAX+1;  
        }  
    }  
    int ans = 0;  
    for(int i = 1; i <= m; i++) ans = max(ans, f[n][i]);  
    printf("%d\n", ans);  
}  

可以发现,其实上面的代码有些地方与0/1背包很相似,即每次用到的只是上一层循环用到的值,即f[i-1][j],那么我们可以像优化0/1背包问题利用滚动数组来优化空间。

核心代码:

void dp()  
{  
    init();  
    for(int i = 1; i <= n; i++)  
    {  
        int MAX = 0;  
        for(int j = 1; j <= n; j++)  
        {  
            if(a[i] > b[j]) MAX = max(MAX, f[j]);  
            if(a[i] == b[j]) f[j] = MAX+1;  
        }  
    }  
    int ans = 0;  
    for(int j = 1; j <= m; j++) ans = max(ans, f[j]);  
    printf("%d\n", ans);  
}  
但是这样并不能求出该序列的具体序列,所以需要对f[j]有所改变

struct lili
{
    int val;
    vector<int> line;
};

贴全部代码:

#include<iostream>
#include<vector>
using namespace std;
struct lili
{
    int val;
    vector<int> line;
};
int main()
{
    int n, m, a[510] = { 0 }, b[510] = { 0 };
    lili dp[510];
    int i, j;
    for (i = 1; i <= 501; i++)
        dp[i].val = 0;
    cin >> n;
    for (i = 1; i <= n; i++)
        cin >> a[i];
    cin >> m;
    for (i = 1; i <= m; i++)
        cin >> b[i];
    lili max;
    for (i = 1; i <= m; i++)
    {
        max.val = 0; 
        max.line.clear();
        for (j = 1; j <= n; j++)//遍历a序列
        {
            if (b[i] > a[j] && dp[j].val > max.val)
                max = dp[j];
            if (b[i] == a[j])
            {
                dp[j] = max;
                dp[j].val = max.val + 1;
                dp[j].line.push_back(a[j]);
            }
        }
    }
    int maxx = 1;
    for (i = 2; i <= n; i++)
        if (dp[maxx].val < dp[i].val)
            maxx = i;
    cout << dp[maxx].val << endl;
    for (i = 0; i < dp[maxx].line.size(); i++)
    {
        cout << dp[maxx].line[i] << ' ';
    }
    cout << endl;
    return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值