在之前的最小二乘法拟合直线-C++实现文章中有提过TVDI指数计算的方法,其中拟合的关键是怎么找到有效的NDVI(相当于自变量X)和LST(相当于因变量Y)这两组相对应的数据,即具体干湿边拟合的步骤是怎么样的。本文针对干湿边的拟合过程做一个详细的说明,如有不足之处恳请各位指教。
首先需要说明的一点是输入的NDVI和LST数据是行列数相等的数据,因此,可以以NDVI为横坐标,LST为纵坐标,得到NDVI-LST的散点图。根据NDVI-LST的散点图,就能得到每个NDVI值对应的LST的最大最小值,也就是我们要求的干边和湿边。下面就具体说说如何得到每个NDVI值对应的LST的最大最小值,以为后面的线性拟合做数据准备。
1. 将NDVI从0.01开始,步长设为0.01,这样就能将NDVI从0~1之间等分为100份,分别为0.01,0.02,0.03,,,,,0.99,1.0。(可根据具体情况进行修改)
2. 在NDVI影像中查找范围在之间的值的索引,然后根据这些索引,从LST影像中获取对应索引位置的LST数据,根据这些获取的LST的数据,求出这些LST数据中的最大最小值(可按5%求平均以提高精度),这样在