温度植被干旱指数(TVDI)



一、研究背景

    近几年来我国持续发生干旱,严重影响我国农业发展,给我国国民经济带来巨大损失。为防范旱灾而进行的土壤水分监测一直是人们关心的问题。遥感技术具有宏观、快速、动态、经济的特点,可以代替常规的监测方法,实现大面积、动态监测。因此,近几年来利用遥感的进行干旱监测是一个研究和应用的热点。作为同时与归一化植被指数(NDVI)和地表温度(LST)相关的温度植被干旱指数(TVDI)可用于干旱监测,尤其是监测特定年内某一时期整个区域的相对干旱程度,并可用于研究干旱程度的空间变化特征。使用TVDI进行干旱监测的相关论文越来越多。

二、存在问题

    虽然TVDI模型早已经证明对监测干旱有比较好的效果,但是在实际应用中却比较少见。为什么?广大的遥感工作者拿着这个模型没法实际应用,主要原因是目前的遥感软件中没有计算TVDI的工具,要实现这个模型必须得编程,或者操作非常的麻烦(有用户反映利用EXCEL来做一期TVDI结果,小区域也得2天才能做出来。

    同样地,在平常工作中,发现很多人都在询问如何利用遥感软件来进行TVDI的计算,因为各类软件都没有提供这个功能。因此,基于ENVI/IDL灵活的二次开发特征,研究了利用ENVI/IDL来计算TVDI,开发出了TVDI计算补丁,体现了ENVI/IDL在干旱相关的研究领域和应用行业具有其他遥感软件所不具备的优势,也进一步说明了ENVI强大的二次开发功能。

三、模型实现的流程

1、原理

温度植被干旱指数(TVDI)的计算方法为:
ENVI下温度植被干旱指数(TVDI)功能模块,其中ENVI下温度植被干旱指数(TVDI)功能模块

详细原理可以参考:参考《条件植被温度指数及其在干旱监测中的应用》、《利用温度植被干旱指数(TVDI)方法反演杭州伏旱期土壤水分》。

2、实施流程

(1)找出所有NDVI值对应的地面温度值,并将其绘图。

ENVI下温度植被干旱指数(TVDI)功能模块

NDVI-LST特征空间散点图

 

(2)根据NDVI-LST的散点图,就能等到每个NDVI值对应的LST的最大最小值,也就是我们求得干边和湿边。

ENVI下温度植被干旱指数(TVDI)功能模块

 

NDVI-LST对应的干湿边的散点图

 

(3)根据干边和湿边的散点图,就能拟合到干边方程和湿边方程。

    在实际工作中,不论是写文章还是实际应用,其中NDVI-LST散点图和干湿边方程都是分析和研究的重点。所以在功能设计时,考虑一次性生成所有需要的文件。

四、模块功能介绍

    因为制作的是ENVI的一个扩展功能,所以在进行TVDI计算时,必须利用ENVI对数据进行处理。主要功能:NDVI-LST的散点图生成、干湿边方程的拟合、TVDI影像的计算和生成。

ENVI下温度植被干旱指数(TVDI)功能模块

TVDI计算界面图

    在这里面可以根据数据质量,选择数据范围进行处理。利用ENVI的统计工具分别计算NDVI文件和LST文件的直方图,根据直方图特征选择合适数据范围,输入即可。

    输出结果包括类:绘制干湿边图像、生成拟合曲线图像、TVDI结果图像,运行时需要指定相应的路径。

五、应用领域

    该功能模块主要面向遥感干旱监测、干旱分析等方面,用户为相关领域的研究和实际工作者以及科研院所、高校、环境监测部门等相关单位。

 

评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值