【YOLO初探】 yolo_tensorflow_v1使用YOLO_small.ckpt进行测试

本文是作者作为YOLO初学者的探索,介绍了如何利用TensorFlow 1.4.0和YOLO_small权重文件进行测试。文章提供了所需的Python环境、CUDA和CuDNN版本等材料清单,并详细指导了步骤,包括权重文件的存放位置和修改测试图片路径。通过运行代码,作者展示了YOLO_v1的效果,并对比了与YOLO_v3的差距。
摘要由CSDN通过智能技术生成

前言 0

作为yolo的入门级选手,在前面的两篇文章中,我介绍了最新发布的yolov3的使用情况。追本溯源,在这里想深入的学习一下,所以,在这,将yolo_v1也同样学习一下。 

所需材料

清单:

python3.6

tensorflow-gpu  1.4.0,

cuda_8.0.61_win10

cudnn-8.0-windows10-x64-v6.0

TensorFlow 版本的源码 :https://github.com/hizhangp/yolo_tensorflow

YOLO_small权重文件:https://pan.baidu.com/s/1SShEp8C0rTSbWNNKSgRKLg (提取码:gph6) 

开始运行

step1:将下载的TensorFlow 版本的源码解压,在该目录下新建一个data\weights目录,将下载的YOLO_small权重文件拷贝到此,如下:

step2:打开test.py,在 line206处,输入自己的测试图片,

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值