cufflinks 绘图

cufflinks 绘图 Python数据分析可视化

文章参考:
酷炫的可视化工具包 - cufflinks
其实特简单,手把手教你用 Python 绘制精美交互式可视化图表
一行 Python 代码搞定炫酷可视化
python嵌入窗体中的折线图更新_详解pyqt5的UI中嵌入matplotlib图形并实时刷新(挖坑和填坑)…
Python绘制六种可视化图表详解,三维图最炫酷!你觉得呢?

cufflinks简介

  • Python数据分析可视化工具包,通过单条语句,生成网页图表,可以简单交互。
  • 源数据为 Pandas 数据结构 - DataFrame,因此可以灵活变换。
  • 可以联网通过chart-studio.plotly来进行更加多样的绘制(也可以设置offline_show_link=True,点击生成的网页右下角进入页面,需要登录后导出到本地)
    示例01
    示例02

绘图示例

条形图

示例1

散点图

示例2

3

示例3

4

示例4

5

示例5

6

示例6
示例6动图

7

示例7

8

示例8

9

示例9

10

示例10

11

示例11

12

示例12

13

示例13

14

示例14

129

示例129

124

示例124

125

示例125

126

示例126

PIE

示例PIE

使用备注

cufflinks封装很好,通常在清楚数据集的前提下可以一句话导出图像,而且可以方便地缩放、查看点值,不过在同一网页显示多个图像比较复杂,详细的样式设置比较复杂
也可以通过设置 iplot() 函数的参数来控制绘图的样式,但从这里也可以看到,样式越多,越复杂,对不同的kind来说,对不同的参数是有要求的。所以需要有一个备注,来方便地画图,设置一些关键的样式

详细的帮助信息可以通过 help() 输出:
注意有的参数名在帮助里是错的,就是大小写之类的小错误,但是会报错,不要担心,跟踪查找一下关键字就可以了

import pandas as pd
import cufflinks as cf
help(pd.DataFrame().iplot)
# For a list of supported figures
cf.help()
cf.help('bar')	# 具体的帮助信息

其中 iplot() 所支持的参数如下:

_iplot(kind='scatter', 
	data=None, layout=None,
	filename='', sharing=None,
	title='', xTitle='', yTitle='', zTitle='', 
	theme=None, colors=None, colorscale=None,
	fill=False, width=None, dash='solid', mode='',
	interpolation='linear', symbol='circle', size=12, 
	barmode='', sortbars=False, 
	bargap=None,
	bargroupgap=None, 
	bins=None, 
	histnorm='', 
	histfunc='count', 
	orientation='v', 
	boxpoints=False, 
	annotations=None, 
	keys=False, 
	bestfit=False, 
	bestfit_colors=None, 
	mean=False, 
	mean_colors=None,
	categories='', 
	x='', y='', z='', 
	text='', 
	gridcolor=None, zerolinecolor=None, 
	margin=None, labels=None, values=None, 
	secondary_y='', secondary_y_title='', 
	subplots=False, shape=None, 
	error_x=None, error_y=None, error_type='data',
	locations=None, lon=None, lat=None,
	asFrame=False, asDates=False, asFigure=False, asImage=False, 
	dimensions=None, 
	asPlot=False, asUrl=False, 
	online=None, **kwargs) 
	
method of pandas.core.frame.DataFrame instance
Returns a plotly chart either as inline chart, image of Figure object
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值