cufflinks 绘图 Python数据分析可视化
文章参考:
酷炫的可视化工具包 - cufflinks
其实特简单,手把手教你用 Python 绘制精美交互式可视化图表
一行 Python 代码搞定炫酷可视化
python嵌入窗体中的折线图更新_详解pyqt5的UI中嵌入matplotlib图形并实时刷新(挖坑和填坑)…
Python绘制六种可视化图表详解,三维图最炫酷!你觉得呢?
cufflinks简介
- Python数据分析可视化工具包,通过单条语句,生成网页图表,可以简单交互。
- 源数据为 Pandas 数据结构 - DataFrame,因此可以灵活变换。
- 可以联网通过chart-studio.plotly来进行更加多样的绘制(也可以设置offline_show_link=True,点击生成的网页右下角进入页面,需要登录后导出到本地)
绘图示例
条形图
散点图
3
4
5
6
7
8
9
10
11
12
13
14
129
124
125
126
PIE
使用备注
cufflinks封装很好,通常在清楚数据集的前提下可以一句话导出图像,而且可以方便地缩放、查看点值,不过在同一网页显示多个图像比较复杂,详细的样式设置比较复杂
也可以通过设置 iplot() 函数的参数来控制绘图的样式,但从这里也可以看到,样式越多,越复杂,对不同的kind来说,对不同的参数是有要求的。所以需要有一个备注,来方便地画图,设置一些关键的样式
详细的帮助信息可以通过 help() 输出:
注意有的参数名在帮助里是错的,就是大小写之类的小错误,但是会报错,不要担心,跟踪查找一下关键字就可以了
import pandas as pd
import cufflinks as cf
help(pd.DataFrame().iplot)
# For a list of supported figures
cf.help()
cf.help('bar') # 具体的帮助信息
其中 iplot() 所支持的参数如下:
_iplot(kind='scatter',
data=None, layout=None,
filename='', sharing=None,
title='', xTitle='', yTitle='', zTitle='',
theme=None, colors=None, colorscale=None,
fill=False, width=None, dash='solid', mode='',
interpolation='linear', symbol='circle', size=12,
barmode='', sortbars=False,
bargap=None,
bargroupgap=None,
bins=None,
histnorm='',
histfunc='count',
orientation='v',
boxpoints=False,
annotations=None,
keys=False,
bestfit=False,
bestfit_colors=None,
mean=False,
mean_colors=None,
categories='',
x='', y='', z='',
text='',
gridcolor=None, zerolinecolor=None,
margin=None, labels=None, values=None,
secondary_y='', secondary_y_title='',
subplots=False, shape=None,
error_x=None, error_y=None, error_type='data',
locations=None, lon=None, lat=None,
asFrame=False, asDates=False, asFigure=False, asImage=False,
dimensions=None,
asPlot=False, asUrl=False,
online=None, **kwargs)
method of pandas.core.frame.DataFrame instance
Returns a plotly chart either as inline chart, image of Figure object