分布式优化算法在经济调度问题中的应用与分析
在电力系统的运行和规划中,经济调度问题(EDP)是一个关键的优化问题,其目标是在满足总需求和单个发电机输出约束的前提下,最小化总发电成本。本文将介绍相关的分布式优化算法及其在不同场景下的应用和性能分析。
收敛性分析
在进行数值实验之前,先对算法的收敛性进行分析。当满足一定条件时,如 $\lambda_i(k)$ 随着 $k \to \infty$ 趋近于 $\lambda^ $,不等式(5.42)的最后一项会趋近于零。进而可以推出,当 $\lambda(k)$ 以 $O(\gamma^k)$ 的线性速率趋近于 $1_n\lambda^ $ 时,$x(k)$ 会以 $O((\gamma/2)^k)$ 的线性速率趋近于 $1_nx^*$。
数值实验
为了验证算法的有效性和通用性,进行了以下几个案例研究。
案例一:五智能体网络模拟
研究一个包含 $n = 5$ 个智能体的网络中的经济调度问题。每个智能体 $i$ 有自己的局部成本函数 $Y_i(P_i) = a_i P_i^2 + b_i P_i$,且每个智能体的发电功率有限,$p_i \in [0, P_{max}^i]$。网络的平均需求为 $P = 60MW$。各智能体的成本系数 $a_i$、$b_i$ 以及发电功率上限 $P_{max}^i$ 如下表所示:
| Gen | $a_i$ (MU/MW²) | $b_i$ (MU/MW) | $P_{max}^i$ (MW) |
| — | — | — | — |
| 1 | 0.04 | 2.0 | 80 |
|
超级会员免费看
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



