探索因子分析:从基础概念到实际应用
1. 因子分析的起源与基础
在因子分析的发展历程中,最初的探索源于对测试中不同因子的研究。存在一个通用因子适用于所有子测试,而每个子测试又有其独特的特定因子。通过将表 4.1 中的括号组件纳入四差计算,诞生了首个因子分析技术。
例如,在表 4.1 中,若 x 是列 a 与行 a 交叉处的未知值,可通过四差公式计算得出:
[x \times r_{bc} = r_{ab} \times r_{ac}]
假设 (r_{bc}=0.56),(r_{ab}=0.63),(r_{ac}=0.72),则:
[x \times 0.56 = 0.63 \times 0.72]
解得 (x = 0.81)。
这个值被称为“g”在 a 上的饱和值,其平方根即为 a 与“g”(一般智力)的相关性。在表 4.1 中,“g”列下的数字代表五个子测试在一般智力上的因子载荷。可以看出,子测试 a 的饱和度很高,而子测试 f 则相对较低。
当然,表 4.1 中的例子是人为设定的。在实际应用中,计算不会如此规整,四差也不会恰好为零。但我们可以计算这些差值,求出每个饱和度估计值的平均值,以此来估计在“g”上的因子载荷。Spearman 进一步推进了这一过程,为验证他的双因子理论,他利用载荷估计每个相关性的值,通过与实际相关性比较,判断理论的拟合优度。他还能从预期值中减去观测相关性,并对残差再次进行处理,从而提取第二个因子,这在某些特定因子并非完全独特时可能会发生。Spearman 的见解十分卓越,几十年后统计学家才从统计学角度证实了他的理论。
2. 向量代数与因子旋转
Spe
超级会员免费看
订阅专栏 解锁全文
19万+

被折叠的 条评论
为什么被折叠?



