字体像素化很多都是错的

昨天的推送谈了字体像素化的纠偏问题

少走弯路:单片机使用点阵字体通过像素化的正确获取-CSDN博客

 

今天看了某些在线生成像素化的网站,以"阵"为例,16*16:

某些在线网站的结果如下:

 

 标准应该如下

         1      
 11111   1      
 1   1   1      
 1  1 111111111 
 1  1   1       
 1 1    1 1     
 1  1  1  1     
 1  1  1111111  
 1   1    1     
 1   1    1     
 1   1    1     
 11 1 111111111 
 1 1      1     
 1        1     
 1        1     
 1        1     

 看起来上面有个在线像素化是对的,其实是被误导了,再看,如果换成数字"2":

 

标准结果:

           
                
  1111          
 1    1         
 1    1         
 1    1         
      1         
     1          
    1           
   1            
  1             
 1    1         
 111111         
                
                

如果16号不明显的话来看看32号字体,这夸张的结果啊:

 

 标准结果:

                                
                  1             
                  111           
   1      1       11            
   111111111      1             
   11     11     11       11    
   11    11 11111111111111111   
   11    1       1              
   11    1      11              
   11   1       11  1           
   11   1       1   111         
   11  1       11   11          
   11  1       11   11          
   11   1      1    11          
   11    1    11    11    11    
   11    11  111111111111111    
   11     1   1     11          
   11     11        11          
   11     11        11          
   11     11        11          
   11    111        11     11   
   11 11111 111111111111111111  
   11   111         11          
   11   1           11          
   11               11          
   11               11          
   11               11          
   11               11          
   11               11          
   1                1           
                                

 下面是PCtoLCD2018的生成:

基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构与权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络与滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度与鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析与仿真验证相结合。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值