UVA - 1153(贪心算法)

本题目给出了一些要执行的命令,需要x单位时间,必须在y时刻之前完成,给出n条命令,问从时刻0开始,最多能够不冲突的完成多少条命令。

1<=n<=8*1e5

解体思路:

首先,如果知道了,前i个的最优解耗时t,完成k个任务,

那么,前i+1的最优解可以被构造出来,

如果  t+a[i+1].x<=a[i+1].y,那么前i+1的最优解就是k+1,耗时t+a[i+1].x;

否则,把i+1,加入最优解队列,剔除耗时最多的一个。(这样最优解仍保持为k,只是耗时可能变少)

这题目是站在最有解构造角度实现的,实现方法有很多种。




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值