RFI:计算公式参照 Aggrey 等(2010)模型(Aggrey et al. 2010)。
RFI=FI-[a+b1*BW0.75+b2*BWG]
公式中,RFI 为剩余采食量,FI为采食量,a为截距,BW0.75为代谢体重,BWG为体增重,b1、b2 为代谢体重和体增重关于采食量的偏回归系数。
关于a\b1\b2采用SPSS线性拟合函数进行计算:
在SPSS中,偏回归系数是指在多元回归分析中,衡量自变量对因变量的影响程度的系数。具体而言,偏回归系数表示当其他自变量保持不变时,某个自变量对因变量的影响的变化量,
SPSS的多元回归分析输出结果中,列出了每个自变量的偏回归系数。偏回归系数通常被标记为"B"或"Beta",代表了自变量单位变化对因变量的影响。偏回归系数的正负值表示自变量对因变量的正向或负向影响,而数值的大小表示影响的强度。
通常,偏回归系数还伴随有一个标准误差,用来衡量该系数的抽样误差。标准误差越小,表示该系数的估计越精确可靠除了偏回归系数,SPSS的多元回归分析还提供了其他相关统计指标,例如:截距项(指当所有自变量为0时,因变量的预测值)、显著性水平(表示自变量对因变量的影响是否县有统计显著性)、回归模型的拟合优度等,这些指标可以帮助我们更全面地理解自变量对因变量的影响。
综上所述,偏回归系数是SPSS中多元回归分析结果中衡量自变量对因变量影响的指标之一,它提供了自变量单位变化对因变量影响的大小和方向。操作流程如下:
(一)简单线性回归
一个自变量
1.根据预测目标,确定自变量和因变量
广告费用’作为自变量,‘销售额’作为因变量,评估广告对销售额的具体影响
2.绘制散点图确定相关性
相关系数为0.816,为高度正向相关关系
3.估计模型参数,建立线性回归模型
【分析】【回归】【线性】,变量移至对应的因变量自变量
【统计】,勾选【回归系数框】,作用是估计出回归系数;勾选【模型拟合】,作用是输出判定系数 R²
【选项】勾选【在方程中包括常量】,作用是拟合出直线的截距 a
【确定】输出四张表
4.对回归模型进行检验
第二列为相关系数 r 为 0.816,高度正相关,与前面分析结果一致;第三列 R 方位判定系数,用于表示拟合得到的模型能解释因变量变化的百分比,越接近 1,表示模型效果越好;第四列修正因自变量的个数的增加而导致模型拟合效果过高的情况,用于衡量多重线性回归;最后一列,其大小反应了建立的模型预测因变量时的精度,越小,说明模型拟合效果越好。
线性回归方差分析表,,主要作用是通过 F 检验来判断回归模型的回归效果,即检验因变量与所有自变量之间的线性关系是否显著,用线性模型来描述他们之间的关系型是否恰当
平方和(SS),自由度(df),均方(MS),F(F统计量),显著性(P值),一般只需关注 F 和 P,0.01 < p <= 0.05 ,具有统计学意义,p <= 0.01 具有极其显著的统计学意义
第一列为回归模型的常量与自变量 x
第二列的 B 为常量 a(截距),回归系数 b(斜率),回归模型 y = 377 + 14.475x
5.利用回归模型进行预测
预测数据较多时,可以在【线性回归】对话框中,单击【保存】按钮,勾选【未标转化】,新增了一列‘PRE_1’的预测变量
(二)多重线性回归
1.根据预测目标确定自变量因变量
广告费用’‘客流量’作为自变量,‘销售额’因变量
2.绘制散点图,确定回归模型
【矩阵散点图】
3.估计模型参数,建立线性回归模型
【分析】【回归】【线性】,‘客流量’放入自变量,5中自变量步进方法
【输入】:强制将所选择的自变量纳入回归模型中
【步进】:将自变量逐个引入模型并进行统计显著性检验,直至再也没有不显著的自变量从回归模型中剔除为止
【除去】:根据设定条件,直接剔除一部分自变量
【后退】:根据设定条件,每次剔除一个自变量直至不能剔除
【前进】:根据设定条件,每次纳入一个自变量直至无法继续纳入
简单回归只有一个自变量,仅能采用【输入】
多重线性回归,采用【步进】,是【后退】与【前进】的集合
4.模型检测
第三列‘除去的变量’,因为采用的是【输入】,全部纳入模型中,没有移除变量,所以为空
标转化系数分别为 0.407,0.499 也就是说,客流量对销售额的影响要大于广告费用对销售额的影响
5.利用回归模型进行预测
和简单线性回归一样