直接说解法:
我们只考虑1<=p < q < r < s <= n , Nq > Ns > Np > Nr 的这种情况,先枚举 p , q 的位置 , 那么先选s的位置,s的位置越靠后越好,这样会留下更大的空间选r
又知道所有数不同,离散化位1 到 n , 那么假设p , q 位置确定 ,以pos数组记录每个1 -- n 每个离散化后的数对应的数组位置, 那么 s的最佳位置为 pos数组 上
Np + 1 --> Nq - 1 这个区间的最大值 记为 max_pos , 那么下面只需要寻找在数组a上的区间 q + 1 ---> max_pos - 1 是否有值比Np小就可以了。
由于这两次查找区间最值都可以通过RMQ预处理做到O(1)的查询,所以总时间复杂度位 O(n^2)。
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <iostream>
#include <map>
#include <vector>
using namespace std;
typedef long long ll;
#define rep( i , n) for(int i = 0 ; i<(int)n;i++)
#define rep1(i ,x , y) for(int i = (int)x ; i<=(int)y;i++)
const int N = 5050;
int max_[N][20],min_[N][20],lg2[N]; //20不一定是唯一的。需要计算log(N)/log(2)
void ST(int *a,int n)
{
lg2[0]=-1;
for(int i=1; i<=n; i++)
lg2[i]=lg2[i-1]+(i&(i-1)?0:1);
for(int i=0; i<n; i++) max_[i][0]=a[i]; //a第一个数从零开始
for(int j=1; j<=lg2[n]; j++)
for(int i=0; lg2[n-i]>=j; i++)
max_[i][j]=max(max_[i][j-1],max_[i+(1<<(j-1))][j-1]);
}
int RMQ_Max(int x,int y)
{
int k=lg2[y-x+1];
return max(max_[x][k],max_[y-(1<<k)+1][k]);
}
void ST2(int *a,int n)
{
lg2[0]=-1;
for(int i=1; i<=n; i++)
lg2[i]=lg2[i-1]+(i&(i-1)?0:1);
for(int i=0; i<n; i++) min_[i][0]=a[i]; //a第一个数从零开始
for(int j=1; j<=lg2[n]; j++)
for(int i=0; lg2[n-i]>=j; i++)
min_[i][j]=min(min_[i][j-1],min_[i+(1<<(j-1))][j-1]);
}
int RMQ_Min(int x,int y)
{
int k=lg2[y-x+1];
return min(min_[x][k],min_[y-(1<<k)+1][k]);
}
struct San :vector<int>
{
void prepare()
{
sort(begin(),end());
erase(unique(begin(),end()),end());
}
int get(int x)
{
return (int)(lower_bound(begin(),end(),x)-begin())+1;
}
} rank;
int n,a[N],pos[N];
bool cal()
{
ST2(a , n);
ST(pos , n);
int ok = 0;
for(int i = 1 ; i<=n ; i++)
{
for(int j = i + 1 ; j<=n ; j++) if(a[j] > a[i])
{
int L = a[i] + 1;
int R = a[j] - 1;
if(L > R) continue;
int max_pos = RMQ_Max(L , R);
R = (--max_pos);
L = j + 1;
if(L > R) continue;
int min_val = RMQ_Min(L , R);
if(min_val < a[i]){
ok = 1;
break;
}
}
if(ok) break;
}
return ok;
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
rank.clear();
rep1(i , 1 , n) scanf("%d",&a[i]),rank.push_back(a[i]);
rank.prepare();
for(int i = 1 ; i<=n ; i++)
{
a[i] = rank.get(a[i]);
pos[a[i]] = i;
}
if(cal())
{
printf("YES\n");
continue;
}
for(int i = 1 ; i<=n ; i++)
{
a[i] = n + 1 - a[i];
pos[a[i]] = i;
}
if(cal())
{
printf("YES\n");
continue;
}
printf("%s\n","NO");
}
return 0;
}