第三章 感想:第三章主要讲的是数学知识,跟高数差不多,找到一个算法导论答案的网址跟大家分享一下,里边答案基本上挺准的,也在豆瓣上看到一些前辈写的读书笔记,很受启发。 算导答案:http://clrs.skanev.com/
感觉思考题3-6没有写过程,把我的解题过程写上来吧。
f(n) | c | f∗c(n) |
---|---|---|
n−1 | 0 | Θ(n) |
lgn | 1 | Θ(lg∗n) |
n/2 | 1 | Θ(lgn) |
n/2 | 2 | Θ(lgn) |
n√ | 2 | Θ(lglgn) |
n√ | 1 | does not converge |
n1/3 | 2 | Θ(log3lgn) |
n/lgn | 2 | ω(lglgn),o(lgn) |
-
1 ,f(n)=n-1。每次运算都减1很容易理解界 是Θ(n)。
2,f(n)=lgn。这个答案给的相当于没给,因为lg*n的定义就是不断计算lgn使输出小于等于1所计算的次数。
3,f(n)=n/2. 每回都除以2。 n/ 2i <=1, 推出2i <=n,同时取对数,i=lgn 。
4,理解过程同上。
5,f(n)=. 每次都开根号,相当于 ((n )1/2)1/2….<=2,也就是n的1/2i 次方小于等于2,
两边同时取2为底的对数得 lgn<=2i,最后得再取2为底对数,得 lg(lgn)<=i.
6, 因为 运算无穷次才小于 一,所以次数i等于无穷,也就是不收敛。
7,f(n)= 每次都开3,相当于((n)1/3)1/3….<=2,也就是n的1/3i 次方小于等于2,
两边同时取2为底的对数得 lgn<=2i,最后得再取3为底对数,得 lg3(lgn)<=i.
8 ,答案给出了上界 和下界 ,上界容易理解 n很大时lgn>2,所以用的次数小于f(n)=n/2,所用的次数,下界我不知道该怎样去理解了