算法导论 3.1-6 θ、Ω和O的又一个证明题

证明:一个算法的运行时间为θ(g(n))当且仅当其最坏情况运行时间为O(g(n)),且其最好情况运行时间为Ω(g(n)) 。

解题:

分两步进行证明:

1. 如果一个算法的运行时间为θ(g(n)),那么可得它的最坏情况运行时间为O(g(n)),且其最好情况运行时间为Ω(g(n)) 。

2. 如果一个算法它的最坏情况运行时间为O(g(n)),且其最好情况运行时间为Ω(g(n)),那么可得该算法的运行时间为θ(g(n)) 。

证明1.

如果一个算法的运行时间为θ(g(n)),那么可形式化描述为:

θ(g(n)) = { f(n): 存在正常量c_{1}c_{2}n_{0},使得对所有n\geq n_{0},有 0\leq c_{1}g(n)\leq f(n)\leq c_{2}g(n) }

在最坏情况下,f(n)=c_{2}g(n),由于是最坏情况,所以在该情况下算法只有一个渐近上界,故最坏情况下运行时间为O(g(n)) 。

在最好情况下,f(n)=c_{1}g(n),由于是最好情况,所以在该情况下算法只有一个渐近下界,故最好情况下运行时间为Ω(g(n)) 。

证明1证明完毕。

证明2.

如果一个算法它的最坏情况运行时间为O(g(n)),则说明在最坏情况下,

O(g(n)) = { f(n): 存在正常量c_{2},和n_{0},使得对所有n\geq n_{0},有 0\leq f(n)\leq c_{2}g(n) }

而在最好情况下运行时间为Ω(g(n)),则

Ω(g(n)) = { f(n): 存在正常量c_{1},和n_{0},使得对所有n\geq n_{0},有 0\leq c_{1}g(n)\leq f(n) }

结合以上两种情况,我们可以得知

θ(g(n)) = { f(n): 存在正常量c_{1}c_{2}n_{0},使得对所有n\geq n_{0},有 0\leq c_{1}g(n)\leq f(n)\leq c_{2}g(n) }

故证明2成立。

证明2证明完毕。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值