证明:一个算法的运行时间为θ(g(n))当且仅当其最坏情况运行时间为O(g(n)),且其最好情况运行时间为Ω(g(n)) 。
解题:
分两步进行证明:
1. 如果一个算法的运行时间为θ(g(n)),那么可得它的最坏情况运行时间为O(g(n)),且其最好情况运行时间为Ω(g(n)) 。
2. 如果一个算法它的最坏情况运行时间为O(g(n)),且其最好情况运行时间为Ω(g(n)),那么可得该算法的运行时间为θ(g(n)) 。
证明1.
如果一个算法的运行时间为θ(g(n)),那么可形式化描述为:
θ(g(n)) = { f(n): 存在正常量,和,使得对所有,有 }
在最坏情况下,f(n)=,由于是最坏情况,所以在该情况下算法只有一个渐近上界,故最坏情况下运行时间为O(g(n)) 。
在最好情况下,f(n)=,由于是最好情况,所以在该情况下算法只有一个渐近下界,故最好情况下运行时间为Ω(g(n)) 。
证明1证明完毕。
证明2.
如果一个算法它的最坏情况运行时间为O(g(n)),则说明在最坏情况下,
O(g(n)) = { f(n): 存在正常量,和,使得对所有,有 }
而在最好情况下运行时间为Ω(g(n)),则
Ω(g(n)) = { f(n): 存在正常量,和,使得对所有,有 }
结合以上两种情况,我们可以得知
θ(g(n)) = { f(n): 存在正常量,和,使得对所有,有 }
故证明2成立。
证明2证明完毕。