数据管道:批量与实时处理的全面解析
1. 数据管道的阶段
数据管道主要包含以下几个关键阶段:
1. 摄取(Ingestion) :从数据源收集数据并加载到数据管道中。
2. 清洗(Cleaning) :清理数据,去除错误和不一致性。
3. 转换(Transformation) :将数据转换为适合分析的格式。
4. 存储(Storage) :将数据存储在中央位置。
5. 分析(Analysis) :分析数据以提取见解。
6. 交付(Delivery) :将数据交付给用户。
下面是数据管道阶段的 mermaid 流程图:
graph LR
A[摄取] --> B[清洗]
B --> C[转换]
C --> D[存储]
D --> E[分析]
E --> F[交付]
2. 数据处理类型
目前广泛使用的两种主要数据处理类型为批量处理和实时处理:
2.1 批量处理
批量处理是指在一段时间内收集数据,然后一次性进行处理。通常用于处理不需要实时处理的大量数据。例如,一家公司可能每月对其销售数据进行一次批量处理以生成报告。
- 优点
超级会员免费看
订阅专栏 解锁全文
917

被折叠的 条评论
为什么被折叠?



