7、MicroPython硬件使用指南与常见问题解决

MicroPython硬件使用指南与常见问题解决

1. 连接与编程基础

在使用MicroPython板时,连接板子到PC是首要步骤。对于那些可将板载内存作为文件系统访问的板子,连接可能不是问题;但对于需通过特殊软件经USB连接的板子,在编写第一个Python程序前,要确保能成功连接。

1.1 逐步编程

初学者常犯的错误是一次性写完所有代码而不提前测试。这会导致若代码有问题,可能被一堆其他问题掩盖。比如逻辑错误或数据不正确,可能使项目其他部分失败或产生错误结果。若项目完全无法运行,就很难诊断问题所在,这会让初学者陷入困惑和沮丧。

解决办法是逐步构建项目,一次解决一个方面。例如,若用LED发出信号,先让这部分正常工作;若从传感器读取数据,先确保能单独正确读取,再将所有部分连接起来。即使经验丰富的开发者也可能犯此错误,但他们更有能力解决问题。

1.2 编程工具

一些微控制器供应商提供软件开发(编程)工具,其中Arduino集成开发环境(IDE)较为成功,它提供了编写、编译和安装代码到Arduino板所需的所有工具。

部分供应商为其板子提供专用软件,如pycom.io的工具,包括适用于流行编程编辑器的PyMakr插件和适用于移动设备的PyMate应用程序。PyMakr插件可用于编写Python程序并安装到WiPy板上;PyMate应用程序能让你远程操作WiPy板,包括连接网络和在移动设备上查看数据。

不过,PyMakr为Atom、Sublime、Visual Studio Code和PyCharm提供的插件仍在开发中,计划用PyMakr桌面应用程序取代它们。目前,建议使用如File

先展示下效果 https://pan.quark.cn/s/a4b39357ea24 遗传算法 - 简书 遗传算法的理论是根据达尔文进化论而设计出来的算法: 人类是朝着好的方向(最优解)进化,进化过程中,会自动选择优良基因,淘汰劣等基因。 遗传算法(英语:genetic algorithm (GA) )是计算数学中用于解决最佳化的搜索算法,是进化算法的一种。 进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择、杂交等。 搜索算法的共同特征为: 首先组成一组候选解 依据某些适应性条件测算这些候选解的适应度 根据适应度保留某些候选解,放弃其他候选解 对保留的候选解进行某些操作,生成新的候选解 遗传算法流程 遗传算法的一般步骤 my_fitness函数 评估每条染色体所对应个体的适应度 升序排列适应度评估值,选出 前 parent_number 个 个体作为 待选 parent 种群(适应度函数的值越小越好) 从 待选 parent 种群 中随机选择 2 个个体作为父方和母方。 抽取父母双方的染色体,进行交叉,产生 2 个子代。 (交叉概率) 对子代(parent + 生成的 child)的染色体进行变异。 (变异概率) 重复3,4,5步骤,直到新种群(parentnumber + childnumber)的产生。 循环以上步骤直至找到满意的解。 名词解释 交叉概率:两个个体进行交配的概率。 例如,交配概率为0.8,则80%的“夫妻”会生育后代。 变异概率:所有的基因中发生变异的占总体的比例。 GA函数 适应度函数 适应度函数由解决的问题决定。 举一个平方和的例子。 简单的平方和问题 求函数的最小值,其中每个变量的取值区间都是 [-1, ...
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值