金融领域中的进化计算:理论、应用与发展
1. 进化计算在金融领域的定义与动机
1.1 定义
进化计算(EC)在金融领域是一个融合了研究与知识的领域,它运用EC技术来处理金融相关的各种问题。这一领域与经济领域的进化计算有相似之处,并且在很多研究主题上存在重叠。其应用主要有两个目的:一是克服一些理论模型的局限性,突破这些模型中的部分假设;二是在竞争激烈的金融研究领域进行创新,因为该领域存在强大的经济激励因素促使创新。
1.2 动机与背景
进化计算是机器学习的一个分支,它通过不同方式应用进化原理。在金融应用中,常用的技术包括遗传算法(GAs)、遗传编程(GP)、学习分类器系统(LCSs)、基于种群的增量学习(PBIL)、语法进化(GE)、进化策略(ESs)、模因算法(MAs)和进化最近邻分类器算法(ENPC)等。并且,这些技术常与其他机器学习工具结合使用。
在金融市场中,竞争是日常活动的核心。个人和公司为了在市场中获得更多利润,需要不断创新,因此自然会使用现有的EC技术来解决金融问题。例如,在股票市场中,投资者试图超越市场以获取更多利润,开发新的算法或技术对于保持竞争力至关重要。
这一研究领域有多个不同的名称,如计算金融和金融计算智能等。由于该领域仍在不断发展,很难对其进行明确的定义和界定范围。目前有大量关于该领域的专业期刊、会议和书籍,例如Chen(2002a)、Chen和Wang(2004)以及Chen等人(2007)的研究都是该动态领域的重要成果。
计算在金融领域几乎是不可或缺的工具,从蒙特卡罗模拟到用于复杂衍生品定价的计算机密集型方法,都离不开计算。计算金融常与金融工程相关联,但这里所指的计
超级会员免费看
订阅专栏 解锁全文
4625

被折叠的 条评论
为什么被折叠?



