归纳逻辑编程:原理、方法与应用
1. 归纳学习概述
归纳学习是机器学习的一个子类,它研究基于统计规律来学习知识的算法。通过归纳学习获得的知识通常没有演绎上的正确性保证,但可能存在统计形式的保证。它也被称为统计学习。
2. 归纳逻辑编程简介
归纳逻辑编程是机器学习的一个子领域,它使用一阶逻辑来表示假设和数据。由于一阶逻辑具有表达性和声明性,归纳逻辑编程特别针对涉及结构化数据和背景知识的问题。它可以处理机器学习中的各种问题,包括分类、回归、聚类和强化学习等,常借助对现有命题机器学习系统的“升级”来实现。其相关概念如覆盖、一般性以及遍历假设空间的算子都基于逻辑。它还有一些同义词,如逻辑学习、多关系数据挖掘、关系数据挖掘和关系学习。
2.1 动机
- 克服属性值学习系统的表示限制 :属性值学习系统采用基于表格的表示方式,存在单表单元组假设。许多问题,如邦加德问题,难以用这种格式优雅地描述。邦加德问题包含多个具有不同数量对象和关系的场景,而属性值学习系统假设属性数量固定且所有示例都包含这些属性,同时该表示方式还对属性施加了隐式顺序,这与邦加德问题中对象无自然顺序的情况不符。一阶逻辑和关系表示允许以自然的方式编码涉及多个对象及其关系的问题。
- 利用逻辑的优势 :归纳逻辑编程使用逻辑这种声明性表示,使得假设易于理解和解释。同时,它能在归纳过程中利用背景知识,背景知识可以以辅助关系或谓词的定义形式提供。此外,逻辑为知识表示和推理提供了一个完善的理论框架,有助于定义和开发覆盖关系、一般性和细化算子等概念。
2.2 理论
归纳逻辑编程通常被定义为使用逻辑表示进行概念学习。其目标是找到一个假设(一组规则),在考虑背景理论的情况下,覆盖所有正例而不覆盖任何反例。更正式地,传统的归纳逻辑编程定义如下:
给定:
- 描述假设的语言 (L_h)
- 描述实例的语言 (L_i)
- 可能存在的背景理论 (B),通常以一组(确定)子句的形式存在
- 覆盖关系,它指定了 (L_h) 和 (L_i) 之间的关系,即当一个示例 (e) 被假设 (h) 覆盖(视为正例)时,可能会考虑背景理论 (B)
- 一组正例和反例 (E = P \cup N)
找到一个假设 (h \in L_h),使得对于所有 (p \in P),(covers(B, h, p) = true);对于所有 (n \in N),(covers(B, h, n) = false)。
这个定义可以扩展以处理噪声数据,通过放宽对所有示例都正确分类的要求。
学习问题在逻辑中有不同的表示方式,从而产生不同的学习设置。通常使用确定子句逻辑作为假设语言 (L_i),但示例的概念有所不同。可以从蕴含、解释或证明中学习,其中最流行的设置是从蕴含中学习,即每个示例是一个子句,当且仅当 (B \cup h \models e) 时,(covers(B, h, e) = true)。
例如,邦加德问题中的一个场景可以用子句表示:
positive :- object(o1),
object(o2),
circle(o1),
triangle(o2),
in(o1, o2),
large(o2).
对应的一个假设可以是:
positive :- object(X),
object(Y),
circle(X),
triangle(Y),
in(X,Y).
该假设表明,那些有一个圆在三角形内的场景为正例。对于更复杂的邦加德问题,可以使用背景知识,如:
polygon(X) :- triangle(X).
使用这个背景理论,一个替代假设可以是:
positive :- object(X),
object(Y),
circle(X),
polygon(Y),
in(X,Y).
另一种表示示例的方式是为每个示例提供一个标识符,并将子句条件部分的相应事实添加到背景理论中。例如:
object(e1,o1).
object(e1,o2).
circle(e1,o1).
triangle(e1,o2).
in(e1,o1,o2).
large(e1,o2).
正例本身则通过事实 (positive(e1)) 表示。
2.3 方法
许多最近开发的归纳逻辑编程系统从现有的属性值学习器开始,并将其升级为使用一阶逻辑。实现这一目标的方法包括以下两个步骤:
1.
升级问题设置
:将示例、假设和覆盖关系的表示改为一阶逻辑,确定学习设置,如从蕴含、解释或证明中学习。
2.
调整原始算法
:使原始算法能够处理升级后的表示,尽量保持更改最小化,这通常涉及修改用于遍历搜索空间的算子。
采用这种方法有以下优点:
- 利用命题设置中的经验和成果:通过升级在属性值表示方面已经有效的学习器,可以借鉴命题机器学习数十年研究积累的成熟方法和发现。
- 节省人力:升级现有学习器比从头开始开发更容易,因为许多组件(如启发式和搜索策略)可以复用。
- 保证性能:升级后的系统能够模拟原始系统,确保输出的假设在属性值学习问题上表现良好,并且通常还能模拟原始系统的扩展。
- 便于添加新特性:可以通过这种方法将一些命题学习器中通常缺少的特性(如使用背景理论)融入到属性值学习器中。
不过,这种方法并非通用,有些方法(如 Muggleton 的 Progol)是直接在一阶逻辑中开发的,没有命题对应物。在这种情况下,可以考虑采用逆方法,将归纳逻辑编程系统进行专门化。
2.4 FOIL 系统示例
FOIL 是一个简单且著名的归纳逻辑编程系统,可视为规则学习器(如 CN2)的升级。它的问题设置是上述从蕴含中学习的一个实例,但它将背景理论限制为仅包含基础事实,并且不允许使用函子。
FOIL 采用分治策略,从空假设开始,反复搜索一个能覆盖尽可能多正例且不覆盖任何反例的规则,将其添加到假设中,移除被该规则覆盖的正例,然后重复这个过程,直到所有正例都被覆盖。
为了找到一个规则,它通过根据一般性对条款进行排序的空间进行爬山搜索。搜索从最一般的规则(即所有示例都是正例)开始,然后反复对其进行特化。在特化中,根据基于信息增益的启发式评估选择最佳的特化。基于最小描述长度原则的启发式方法用于决定何时停止特化条款。
FOIL 与命题前身的关键区别在于表示和用于计算条款特化的算子。它使用 (\theta)-包含下的细化算子,通过向条款的条件部分添加原子或对条款应用替换来细化条款。例如,条款:
positive :- triangle(X),
in(X,Y),
color(X,C).
可以特化为:
positive :- triangle(X),
in(X,Y),
color(X,red).
positive :- triangle(X),
in(X,Y),
color(X,C),
large(X).
positive :- triangle(X),
in(X,Y),
color(X,C),
rectangle(Y).
第一个特化是通过将变量 (C) 替换为常量 (red) 得到的,另外两个是通过向规则的条件部分添加原子(分别为 (large(X)) 和 (rectangle(Y)))得到的。归纳逻辑编程系统通常还会使用语法限制来指定哪些条款可以用于假设。
2.5 应用
归纳逻辑编程已成功应用于许多领域,包括生物和化学信息学、生态学、网络挖掘、软件工程、信息检索、音乐分析、网络挖掘、自然语言处理、毒理学、机器人学、程序合成、设计和建筑等。其中,最著名的应用是在科学领域,如结构 - 活性关系预测。在这个应用中,给定一组分子及其活性,以及编码分子功能基团的背景知识,任务是学习规则来判断分子是否具有活性。例如,使用 Progol 系统可以发现结构警报,这些警报能够区分活性和非活性分子,并且易于解释,有助于深入了解决定分子活性的因素。
2.6 现状
升级方法已应用于各种机器学习系统和问题,目前存在以下几类归纳逻辑编程系统:
-
诱导逻辑程序
:从各种学习设置下的示例中诱导逻辑程序,这是最流行的一类归纳逻辑编程系统。知名系统包括 Aleph、Progol 以及各种 FOIL 变体。其中一些系统,特别是 Progol 和 Aleph,包含许多命题学习系统中没有的特性,大多数系统专注于分类设置,学习单个谓词的定义。
-
诱导逻辑决策树
:从示例中诱导逻辑决策树,这些树是包含原子合取(即查询)作为测试的二叉决策树。如果查询成功,则选择一个分支,否则选择另一个分支。存在用于分类和回归的决策树方法。
-
频繁查询挖掘
:挖掘频繁查询,查询是原子的合取。可以在示例上评估查询,目标是找到所有频率超过一定阈值的查询。频繁查询挖掘将流行的局部模式挖掘设置升级到归纳逻辑编程。
-
理论定义学习或修订
:同时学习或修订由多个谓词定义组成的理论。一些系统源于 Shapiro 的模型推理系统或 Angluin 的工作。
2.7 当前趋势和挑战
2.7.1 扩展归纳逻辑编程范式
- 与图形和概率模型结合 :将归纳逻辑编程原理与图形和概率模型相结合,用于处理不确定性推理。这一领域被称为统计关系学习、概率逻辑学习或概率归纳逻辑编程,目前是一个非常热门的研究方向,吸引了广泛的人工智能社区的关注。它已经产生了许多对知名图形模型(如贝叶斯网络、马尔可夫网络、隐马尔可夫模型和随机语法)的关系或逻辑升级。
- 使用关系距离度量 :在分类和聚类中使用关系距离度量,这些距离度量考虑了实例的底层结构,用于衡量两个示例或条款之间的相似度。然后将这些距离与标准的分类和聚类方法(如 k - 最近邻和 k - 均值)相结合。
- 集成到强化学习中 :将关系或逻辑表示集成到强化学习中,即关系强化学习。
2.7.2 应对计算复杂性挑战
归纳逻辑编程的强大表达能力也带来了计算复杂性问题。例如,最简单的测试一个假设是否比另一个更一般的方法(即 (\theta)-包含)是 NP 完全的,类似的测试也用于判断一个条款是否覆盖特定示例。因此,归纳逻辑编程和关系学习系统的计算成本比其命题对应物高得多,这体现了计算机科学中表达性与效率之间的权衡。为了应对这些计算困难,归纳逻辑编程在理论上研究了某些逻辑程序子类的多项式可学习性,在实践中致力于开发高效的搜索假设空间和评估假设质量的方法,许多方法采用基于 Prolog 或数据库技术的优化推理引擎或约束满足方法。
总结
归纳逻辑编程为处理涉及结构化数据和背景知识的机器学习问题提供了强大的工具。通过使用一阶逻辑,它能够克服属性值学习系统的表示限制,利用逻辑的优势进行知识表示和推理。尽管面临计算复杂性的挑战,但通过不断的研究和发展,归纳逻辑编程在多个领域都取得了成功的应用,并呈现出与其他领域相结合的发展趋势。未来,随着技术的不断进步,归纳逻辑编程有望在更多领域发挥重要作用。
3. 技术细节分析
3.1 覆盖关系的计算
在归纳逻辑编程中,覆盖关系的计算是核心问题之一。以从蕴含中学习的设置为例,判断 (covers(B, h, e) = true) 即判断 (B \cup h \models e)。这通常涉及到逻辑推理和证明过程。
在实际操作中,可以使用基于 Prolog 的推理引擎来实现。具体步骤如下:
1. 将背景理论 (B)、假设 (h) 和示例 (e) 转换为 Prolog 程序。
2. 使用 Prolog 的查询机制,尝试证明 (e) 是否可以从 (B \cup h) 中推导出来。
3. 如果查询成功,则 (covers(B, h, e) = true);否则,(covers(B, h, e) = false)。
3.2 搜索空间的遍历
搜索空间的遍历是找到合适假设的关键步骤。不同的归纳逻辑编程系统采用不同的算子来遍历搜索空间。以 FOIL 系统为例,它使用 (\theta)-包含下的细化算子。
细化算子的操作流程如下:
1. 从最一般的规则开始,该规则通常是所有示例都是正例。
2. 通过添加原子到规则的条件部分或对规则应用替换来生成特化规则。
3. 根据启发式评估(如信息增益)选择最佳的特化规则。
4. 重复步骤 2 和 3,直到满足停止条件(如基于最小描述长度原则)。
3.3 背景知识的利用
背景知识在归纳逻辑编程中起着重要作用。它可以帮助系统更准确地学习到合适的假设。在实际应用中,背景知识可以以多种形式提供,如辅助关系或谓词的定义。
利用背景知识的步骤如下:
1. 将背景知识转换为逻辑表示,通常是一组确定子句。
2. 在计算覆盖关系和遍历搜索空间时,将背景知识纳入考虑。
3. 根据背景知识对假设进行约束和优化,提高假设的质量。
4. 案例分析:结构 - 活性关系预测
4.1 问题描述
在结构 - 活性关系预测中,给定一组分子及其活性,以及编码分子功能基团的背景知识,任务是学习规则来判断分子是否具有活性。
4.2 数据表示
分子可以用逻辑形式表示,例如:
molecule(m1).
atom(m1, a1, carbon).
atom(m1, a2, hydrogen).
bond(m1, a1, a2, single).
活性信息可以表示为:
active(m1).
背景知识可以表示为:
functional_group(m1, fg1, hydroxyl).
4.3 学习过程
使用归纳逻辑编程系统(如 Progol)进行学习的过程如下:
1. 将分子数据、活性信息和背景知识转换为逻辑表示。
2. 选择合适的学习设置(如从蕴含中学习)。
3. 系统开始搜索假设空间,尝试找到覆盖所有正例(活性分子)且不覆盖任何反例(非活性分子)的假设。
4. 在搜索过程中,根据背景知识和启发式评估对假设进行优化。
5. 最终得到一个或多个规则,用于判断分子的活性。
4.4 结果分析
通过学习得到的规则可以解释为结构警报,这些警报能够区分活性和非活性分子。例如,规则:
active(M) :- molecule(M), functional_group(M, FG, hydroxyl).
表示具有羟基功能基团的分子具有活性。这些规则不仅可以用于预测分子的活性,还可以帮助研究人员深入了解决定分子活性的因素。
5. 未来发展方向
5.1 与深度学习的结合
归纳逻辑编程和深度学习是机器学习的两个重要分支,它们各有优势。未来可以探索将两者结合的方法,以充分发挥它们的优势。例如,可以使用深度学习模型提取数据的特征,然后将这些特征作为背景知识输入到归纳逻辑编程系统中,提高学习的效率和准确性。
5.2 处理大规模数据
随着数据量的不断增加,归纳逻辑编程系统面临着处理大规模数据的挑战。未来需要开发更高效的算法和技术,以应对大规模数据的处理需求。例如,可以采用分布式计算和并行计算的方法,加速搜索空间的遍历和覆盖关系的计算。
5.3 跨领域应用
归纳逻辑编程已经在多个领域取得了成功的应用,但仍有许多领域有待探索。未来可以将归纳逻辑编程应用到更多的跨领域问题中,如医疗保健、金融、交通等,为这些领域提供更有效的解决方案。
6. 总结与展望
6.1 总结
归纳逻辑编程作为机器学习的一个重要子领域,通过使用一阶逻辑,为处理涉及结构化数据和背景知识的问题提供了强大的工具。它克服了属性值学习系统的表示限制,能够有效地利用背景知识进行知识表示和推理。尽管面临计算复杂性的挑战,但通过不断的研究和发展,归纳逻辑编程在多个领域都取得了显著的成果。
6.2 展望
未来,归纳逻辑编程有望在与其他领域的结合中取得更大的突破。与深度学习的结合将为机器学习带来新的发展机遇,处理大规模数据的能力将进一步提升其应用范围,跨领域应用将为更多行业带来创新解决方案。相信在不久的将来,归纳逻辑编程将在人工智能领域发挥更加重要的作用。
6.3 流程图:归纳逻辑编程学习流程
graph TD;
A[数据准备] --> B[选择学习设置];
B --> C[搜索假设空间];
C --> D[计算覆盖关系];
D --> E{是否满足条件};
E -- 是 --> F[输出假设];
E -- 否 --> C;
6.4 表格:不同类型归纳逻辑编程系统对比
| 系统类型 | 特点 | 适用场景 |
|---|---|---|
| 诱导逻辑程序 | 从各种学习设置下的示例中诱导逻辑程序,包含许多命题学习系统没有的特性 | 分类问题,学习单个谓词定义 |
| 诱导逻辑决策树 | 包含原子合取作为测试的二叉决策树,用于分类和回归 | 需要进行决策树分析的场景 |
| 频繁查询挖掘 | 挖掘频繁查询,将局部模式挖掘设置升级到归纳逻辑编程 | 数据挖掘,发现频繁模式 |
| 理论定义学习或修订 | 同时学习或修订由多个谓词定义组成的理论 | 复杂理论的学习和修订 |
超级会员免费看

被折叠的 条评论
为什么被折叠?



